
Secure Optimization Through Opaque Observations

Son Tuan Vu Karine Heydemann
Sorbonne Université

Laboratoire d’Informatique de Paris 6
Arnaud de Grandmaison

Arm
Albert Cohen

Google AI

16 March 2021

1 / 14



Background and Motivation: WYSINWYX phenomenon
Assuming a functionally-correct, well-defined program
Mismatch between

1 Behavior intended by the programmer (source code)
2 What is actually executed by the processor (machine code)

Open issue for security engineering: e.g. cryptographic mask changing
(so that observable results are statistically uncorrelated to secret data)
secret_key ⊕ m

m

secret_key (leaked)

n

secret_key ⊕ n

secret_key ⊕ m

n

secret_key ⊕ m ⊕ n

m

secret_key ⊕ n

2 / 14



Background and Motivation: WYSINWYX phenomenon
Assuming a functionally-correct, well-defined program
Mismatch between

1 Behavior intended by the programmer (source code)
2 What is actually executed by the processor (machine code)

Open issue for security engineering: e.g. cryptographic mask changing
(so that observable results are statistically uncorrelated to secret data)

int mask_swap(int mk, int m) {
int n = rand();
mk = (mk ^ n) ^ m;
return mk;

}

2 / 14



Background and Motivation: WYSINWYX phenomenon
Assuming a functionally-correct, well-defined program
Mismatch between

1 Behavior intended by the programmer (source code)
2 What is actually executed by the processor (machine code)

Open issue for security engineering: e.g. cryptographic mask changing
(so that observable results are statistically uncorrelated to secret data)

int mask_swap(int mk, int m) {
int n = rand();
mk = (mk ^ n) ^ m;
return mk;

}

secret_key ⊕ m

Re-masking of secret
key with new mask n

De-masking of old mask m

2 / 14



Background and Motivation: WYSINWYX phenomenon
Assuming a functionally-correct, well-defined program
Mismatch between

1 Behavior intended by the programmer (source code)
2 What is actually executed by the processor (machine code)

Open issue for security engineering: e.g. cryptographic mask changing
(so that observable results are statistically uncorrelated to secret data)

int mask_swap(int mk, int m) {
int n = rand();
mk = (mk ^ n) ^ m;
return mk;

} Re-masking of secret
key with new mask n

De-masking of old mask m

Underlying property of protection:
Re-masking before De-masking

2 / 14



Background and Motivation: WYSINWYX phenomenon
Assuming a functionally-correct, well-defined program
Mismatch between

1 Behavior intended by the programmer (source code)
2 What is actually executed by the processor (machine code)

Open issue for security engineering: e.g. cryptographic mask changing
(so that observable results are statistically uncorrelated to secret data)

int mask_swap(int mk, int m) {
int n = rand();
mk = (mk ^ n) ^ m;
return mk;

}

int mask_swap(int mk, int m) {
int n = rand();
mk = (mk ^ m) ^ n;
return mk;

}

Expression reordering

2 / 14



Background and Motivation: WYSINWYX phenomenon
Assuming a functionally-correct, well-defined program
Mismatch between

1 Behavior intended by the programmer (source code)
2 What is actually executed by the processor (machine code)

Open issue for security engineering: e.g. cryptographic mask changing
(so that observable results are statistically uncorrelated to secret data)

int mask_swap(int mk, int m) {
int n = rand();
mk = (mk ^ n) ^ m;
return mk;

}

int mask_swap(int mk, int m) {
int n = rand();
mk = (mk ^ m) ^ n;
return mk;

}

Expression reordering

Property not respected

2 / 14



Background and Motivation: WYSINWYX phenomenon
Assuming a functionally-correct, well-defined program
Mismatch between

1 Behavior intended by the programmer (source code)
2 What is actually executed by the processor (machine code)

Open issue for security engineering: e.g. cryptographic mask changing
(so that observable results are statistically uncorrelated to secret data)

int mask_swap(int mk, int m) {
int n = rand();
int tmp = mk ^ n;
mk = tmp ^ m;
return mk;

}

Use of temporary
variable to fix

evaluation order

2 / 14



Background and Motivation: WYSINWYX phenomenon
Assuming a functionally-correct, well-defined program
Mismatch between

1 Behavior intended by the programmer (source code)
2 What is actually executed by the processor (machine code)

Open issue for security engineering: e.g. cryptographic mask changing
(so that observable results are statistically uncorrelated to secret data)

int mask_swap(int mk, int m) {
int n = rand();
int tmp = mk ^ n;
mk = tmp ^ m;
return mk;

}

int mask_swap(int mk, int m) {
int n = rand();
mk = mk ^ m ^ n;
return mk;

}

Temporary variable optimized out
+

Expression reordering

2 / 14



Background and Motivation: WYSINWYX phenomenon
Assuming a functionally-correct, well-defined program
Mismatch between

1 Behavior intended by the programmer (source code)
2 What is actually executed by the processor (machine code)

Open issue for security engineering: e.g. cryptographic mask changing
(so that observable results are statistically uncorrelated to secret data)

int mask_swap(int mk, int m) {
int n = rand();
int tmp = mk ^ n;
mk = tmp ^ m;
return mk;

}

int mask_swap(int mk, int m) {
int n = rand();
mk = mk ^ m ^ n;
return mk;

}

Temporary variable optimized out
+

Expression reordering

Property not respected

2 / 14



Background and Motivation: WYSINWYX phenomenon
Assuming a functionally-correct, well-defined program
Mismatch between

1 Behavior intended by the programmer (source code)
2 What is actually executed by the processor (machine code)

Open issue for security engineering: e.g. cryptographic mask changing
(so that observable results are statistically uncorrelated to secret data)

int mask_swap(int mk, int m) {
int n = rand();
int tmp = mk ^ n;
mk = tmp ^ m;
return mk;

}

int mask_swap(int mk, int m) {
int n = rand();
volatile int tmp = mk ^ n;
__asm__ __volatile__

("":::"memory");
mk = tmp ^ m;
return mk;

}

Coding trick: volatile + asm

2 / 14



Background and Motivation: WYSINWYX phenomenon
Assuming a functionally-correct, well-defined program
Mismatch between

1 Behavior intended by the programmer (source code)
2 What is actually executed by the processor (machine code)

Open issue for security engineering: e.g. cryptographic mask changing
(so that observable results are statistically uncorrelated to secret data)

int mask_swap(int mk, int m) {
int n = rand();
int tmp = mk ^ n;
mk = tmp ^ m;
return mk;

}

int mask_swap(int mk, int m) {
int n = rand();
volatile int tmp = mk ^ n;
__asm__ __volatile__

("":::"memory");
mk = tmp ^ m;
return mk;

}

Coding trick: volatile + asm

Fragile and not portable:
volatile int may be ignored

2 / 14



Background and Motivation: WYSINWYX phenomenon
Assuming a functionally-correct, well-defined program
Mismatch between

1 Behavior intended by the programmer (source code)
2 What is actually executed by the processor (machine code)

Open issue for security engineering: e.g. cryptographic mask changing
(so that observable results are statistically uncorrelated to secret data)

int mask_swap(int mk, int m) {
int n = rand();
int tmp = mk ^ n;
mk = tmp ^ m;
return mk;

}

How to reliably prevent the compiler
from optimizing out tmp thus
respect the evaluation order?

2 / 14



Problem Statement

Approach: make the underlying properties of security countermeasures
explicit and instruct the compiler to preserve it

Objective: preserving properties throughout the optimizing
compilation flow

Constraint: aim for the least intrusive mechanism in order to
implement in production compilers

3 / 14



Property Preservation: Intuition and Challenges

int mask_swap(int mk, int m) {
int n = rand();
int tmp = observe(mk ^ n);
mk = tmp ^ m;
return mk;

}

Observation semantics?

Constraints induced by observations on program transformations?

Preservation of observations and induced constraints: how to make
them transformation-independent?

4 / 14



Property Preservation: Intuition and Challenges

int mask_swap(int mk, int m) {
int n = rand();
int tmp = observe(mk ^ n);
mk = tmp ^ m;
return mk;

}

Capture the wanted value

Observation semantics?

Constraints induced by observations on program transformations?

Preservation of observations and induced constraints: how to make
them transformation-independent?

4 / 14



Property Preservation: Intuition and Challenges

int mask_swap(int mk, int m) {
int n = rand();
int tmp = observe(mk ^ n);
mk = tmp ^ m;
return mk;

}

Capture the wanted value

Make sure it is used next

Observation semantics?

Constraints induced by observations on program transformations?

Preservation of observations and induced constraints: how to make
them transformation-independent?

4 / 14



Property Preservation: Intuition and Challenges

int mask_swap(int mk, int m) {
int n = rand();
int tmp = observe(mk ^ n);
mk = tmp ^ m;
return mk;

}

Capture the wanted value

Make sure it is used next

Observation semantics?

Constraints induced by observations on program transformations?

Preservation of observations and induced constraints: how to make
them transformation-independent?

4 / 14



Program Operational Semantics

State σ =
(
{SSAValues,References,Memory},ProgramCounter

)
Event e = σ

i
 σ′, i = Inst(e)

Program semantics C[[P]]() = function mapping inputs to outputs

Input and output operations are conducted through I/O events

I/O events from the same I/O stream are totally ordered

Execution for input I E [[P]](I ) = σ0e0σ1e1σ2 . . .

⇒ induces a partial ordering relation io→ on I/O events

5 / 14



Observation Semantics

Observation is event associated with the execution of instruction
snapshot(v1, v2, ..., vn)

→ captures the observed values v1, v2, ..., vn into a partial
observation state
→ can be traced down to machine code for verification, debugging,
monitoring, etc.

Additional relations involving observations:

observe-from of→: data dependences over events defining observed
values and the observation of these values

observation ordering oo→: data or control dependences over observations

Observation preservation = preserving partial states, of→ and oo→

6 / 14



Observation Semantics

Observation is event associated with the execution of instruction
snapshot(v1, v2, ..., vn)

→ captures the observed values v1, v2, ..., vn into a partial
observation state
→ can be traced down to machine code for verification, debugging,
monitoring, etc.

Additional relations involving observations:

observe-from of→: data dependences over events defining observed
values and the observation of these values

observation ordering oo→: data or control dependences over observations

Observation preservation = preserving partial states, of→ and oo→

6 / 14



Observation Semantics

Observation is event associated with the execution of instruction
snapshot(v1, v2, ..., vn)

→ captures the observed values v1, v2, ..., vn into a partial
observation state
→ can be traced down to machine code for verification, debugging,
monitoring, etc.

Additional relations involving observations:

observe-from of→: data dependences over events defining observed
values and the observation of these values

observation ordering oo→: data or control dependences over observations

Observation preservation = preserving partial states, of→ and oo→

6 / 14



Observation Semantics

Observation is event associated with the execution of instruction
snapshot(v1, v2, ..., vn)

→ captures the observed values v1, v2, ..., vn into a partial
observation state
→ can be traced down to machine code for verification, debugging,
monitoring, etc.

Additional relations involving observations:

observe-from of→: data dependences over events defining observed
values and the observation of these values

observation ordering oo→: data or control dependences over observations

(1) a = b ^ c; observe-from
(2) snapshot(a); observation ordering
(3) a = a + 42;
(4) snapshot(a);

Observation preservation = preserving partial states, of→ and oo→

6 / 14



Observation Semantics

Observation is event associated with the execution of instruction
snapshot(v1, v2, ..., vn)

→ captures the observed values v1, v2, ..., vn into a partial
observation state
→ can be traced down to machine code for verification, debugging,
monitoring, etc.

Additional relations involving observations:

observe-from of→: data dependences over events defining observed
values and the observation of these values

observation ordering oo→: data or control dependences over observations

Observation preservation = preserving partial states, of→ and oo→
→ preserving observations induces additional constraints on program
transformations

6 / 14



Program Transformations

Transformation τ induces an event map ∝τ relating events before and
after transformation

Valid transformation preserves program semantics C[[P]]() = C[[τ(P)]]()
(i.e. preserves I/O events and their partial ordering relations io→)

7 / 14



Program Transformations

Transformation τ induces an event map ∝τ relating events before and
after transformation

Valid transformation preserves program semantics C[[P]]() = C[[τ(P)]]()
(i.e. preserves I/O events and their partial ordering relations io→)

Assuming the compiler implements valid transformations, how to make
them observation-preserving (i.e. preserving partial states, of→ and oo→)?

7 / 14



Observation Preservation: Opacification

Opacification is event associated with the execution of instruction
v1’= opacify(v1, v2, ..., vn)

→ captures the observed values v1, v2, ..., vn into a partial
observation state

→ returns a value v1’= v1, but the compiler does not know about it

v1’ opaque to program analyses and transformations

compiler sees a statically unknown yet functionally deterministic value

compiler does not assume any relation with the original value v1

8 / 14



Transformed Opacification
Given a program P , an input I , an opacification eop ∈ E [[P]](I ),
Inst(eop) = (v1’ = opacify(v1, ..., vn)), and a valid transformation τ .
Let dep→ denote a data or control dependence relation between two events.

Given an event e ∈ E [[P]](I ) such that eop
dep→ e.

1 ∃e′ ∈ E [[τ(P)]](I ), e ∝τ e′ =⇒ ∃e′op ∈ E [[τ(P)]](I ), eop ∝τ e′op ∧ e′op
dep→ e′

2 ∃e′op ∈ E [[τ(P)]](I ), eop ∝τ e′op =⇒ e′op is also an opacification

3 ∃e′op ∈ E [[τ(P)]](I ), eop ∝τ e′op =⇒ v1, . . . , vn are also preserved in τ(P)

9 / 14



Transformed Opacification
Given a program P , an input I , an opacification eop ∈ E [[P]](I ),
Inst(eop) = (v1’ = opacify(v1, ..., vn)), and a valid transformation τ .
Let dep→ denote a data or control dependence relation between two events.

Given an event e ∈ E [[P]](I ) such that eop
dep→ e.

1 ∃e′ ∈ E [[τ(P)]](I ), e ∝τ e′ =⇒ ∃e′op ∈ E [[τ(P)]](I ), eop ∝τ e′op ∧ e′op
dep→ e′

preservation of e dependent on eop implies preservation of eop

2 ∃e′op ∈ E [[τ(P)]](I ), eop ∝τ e′op =⇒ e′op is also an opacification

3 ∃e′op ∈ E [[τ(P)]](I ), eop ∝τ e′op =⇒ v1, . . . , vn are also preserved in τ(P)

9 / 14



Transformed Opacification
Given a program P , an input I , an opacification eop ∈ E [[P]](I ),
Inst(eop) = (v1’ = opacify(v1, ..., vn)), and a valid transformation τ .
Let dep→ denote a data or control dependence relation between two events.

Given an event e ∈ E [[P]](I ) such that eop
dep→ e.

1 ∃e′ ∈ E [[τ(P)]](I ), e ∝τ e′ =⇒ ∃e′op ∈ E [[τ(P)]](I ), eop ∝τ e′op ∧ e′op
dep→ e′

preservation of e dependent on eop implies preservation of eop

2 ∃e′op ∈ E [[τ(P)]](I ), eop ∝τ e′op =⇒ e′op is also an opacification

if preserved, opacifications are always transformed into opacifications

3 ∃e′op ∈ E [[τ(P)]](I ), eop ∝τ e′op =⇒ v1, . . . , vn are also preserved in τ(P)

9 / 14



Transformed Opacification
Given a program P , an input I , an opacification eop ∈ E [[P]](I ),
Inst(eop) = (v1’ = opacify(v1, ..., vn)), and a valid transformation τ .
Let dep→ denote a data or control dependence relation between two events.

Given an event e ∈ E [[P]](I ) such that eop
dep→ e.

1 ∃e′ ∈ E [[τ(P)]](I ), e ∝τ e′ =⇒ ∃e′op ∈ E [[τ(P)]](I ), eop ∝τ e′op ∧ e′op
dep→ e′

preservation of e dependent on eop implies preservation of eop

2 ∃e′op ∈ E [[τ(P)]](I ), eop ∝τ e′op =⇒ e′op is also an opacification

if preserved, opacifications are always transformed into opacifications

3 ∃e′op ∈ E [[τ(P)]](I ), eop ∝τ e′op =⇒ v1, . . . , vn are also preserved in τ(P)

all values used by opacification (i.e. observed values) are always preserved

9 / 14



Transformed Opacification
Given a program P , an input I , an opacification eop ∈ E [[P]](I ),
Inst(eop) = (v1’ = opacify(v1, ..., vn)), and a valid transformation τ .
Let dep→ denote a data or control dependence relation between two events.

Given an event e ∈ E [[P]](I ) such that eop
dep→ e.

1 ∃e′ ∈ E [[τ(P)]](I ), e ∝τ e′ =⇒ ∃e′op ∈ E [[τ(P)]](I ), eop ∝τ e′op ∧ e′op
dep→ e′

preservation of e dependent on eop implies preservation of eop

2 ∃e′op ∈ E [[τ(P)]](I ), eop ∝τ e′op =⇒ e′op is also an opacification

if preserved, opacifications are always transformed into opacifications

3 ∃e′op ∈ E [[τ(P)]](I ), eop ∝τ e′op =⇒ v1, . . . , vn are also preserved in τ(P)

all values used by opacification (i.e. observed values) are always preserved

⇒ properties directly induced by the definition of “opacity”

9 / 14



Observation Ordering Preservation: Opaque Chains
Opaque Chain:

Used to enforce opacification preservation

⇒ preserving observations and partial states

Used to enforce opacification ordering preservation

⇒ preserving of→ and oo→ relations

10 / 14



Observation Ordering Preservation: Opaque Chains
Opaque Chain:

Used to enforce opacification preservation

⇒ preserving observations and partial states

Used to enforce opacification ordering preservation

⇒ preserving of→ and oo→ relations

→ Opaque Chain = Opacifications in Dependence Chain
+ Opacity-Preserving Instruction

10 / 14



Observation Ordering Preservation: Opaque Chains
Opaque Chain:

Used to enforce opacification preservation

⇒ preserving observations and partial states

Used to enforce opacification ordering preservation

⇒ preserving of→ and oo→ relations

→ Opaque Chain = Opacifications in Dependence Chain
+ Opacity-Preserving Instruction

int main() {
int a = get_int();
int opaque_a = opacify(a);
int b = opaque_a + 1;
return b;

}

10 / 14



Observation Ordering Preservation: Opaque Chains
Opaque Chain:

Used to enforce opacification preservation

⇒ preserving observations and partial states

Used to enforce opacification ordering preservation

⇒ preserving of→ and oo→ relations

→ Opaque Chain = Opacifications in Dependence Chain
+ Opacity-Preserving Instruction

int main() {
int a = get_int();
int opaque_a = opacify(a);
int b = opaque_a + 1;
return b;

}

Opacity Preserving

Opacification

Tail of Chain

10 / 14



Observation Ordering Preservation: Opaque Chains
Opaque Chain:

Used to enforce opacification preservation

⇒ preserving observations and partial states

Used to enforce opacification ordering preservation

⇒ preserving of→ and oo→ relations

→ Opaque Chain = Opacifications in Dependence Chain
+ Opacity-Preserving Instruction

int main() {
int a = get_int();
int opaque_a = opacify(a);
int b = opaque_a * 0;
return b;

}

10 / 14



Observation Ordering Preservation: Opaque Chains
Opaque Chain:

Used to enforce opacification preservation

⇒ preserving observations and partial states

Used to enforce opacification ordering preservation

⇒ preserving of→ and oo→ relations

→ Opaque Chain = Opacifications in Dependence Chain
+ Opacity-Preserving Instruction

void f() {
int a = get_int();
int opaque_a = opacify(a);
int b = opaque_a * 0;
print(b);

}

Opacity Breaking

Opacification

Tail of Chain

10 / 14



Observation Ordering Preservation: Opaque Chains
Opaque Chain:

Used to enforce opacification preservation

⇒ preserving observations and partial states

Used to enforce opacification ordering preservation

⇒ preserving of→ and oo→ relations

→ Opaque Chain = Opacifications in Dependence Chain
+ Opacity-Preserving Instruction

→ If the tailing instruction is preserved, the opaque chain will also
be preserved

Opaque Chain preserved ⇒ Opacifications + Ordering preserved

10 / 14



Putting it to Work

Source code

C builtin

Front-end

Intrinsic
generation

Middle
end

Back-end

Intrinsic
lowering

Pseudo-inst.
removal

Observation
emission

Binary code

DWARF
debug
info

Observation extra info = LLVM metadata

Implementation in latest LLVM with minimal changes to individual passes
→ transformation-independent and future-proof mechanism

→ no additional instructions generated in machine code
11 / 14



Applications

Enforcing countermeasures requiring value preservation

Enforcing computation ordering

12 / 14



Applications

Enforcing countermeasures requiring value preservation

int redundant_add(int a) {

int res = a + 42;

return res;
}

Redundant computation, commonly-used
technique against fault injections

Enforcing computation ordering

12 / 14



Applications

Enforcing countermeasures requiring value preservation

int redundant_add(int a) {
int a_dup = a;
int res = a + 42;

return res;
}

Redundant computation, commonly-used
technique against fault injections

Enforcing computation ordering

12 / 14



Applications

Enforcing countermeasures requiring value preservation

int redundant_add(int a) {
int a_dup = a;
int res = a + 42;
int res_dup = a_dup + 42;

return res;
}

Redundant computation, commonly-used
technique against fault injections

Enforcing computation ordering

12 / 14



Applications

Enforcing countermeasures requiring value preservation

int redundant_add(int a) {
int a_dup = a;
int res = a + 42;
int res_dup = a_dup + 42;
if (res != res_dup)
fault_handler();

return res;
}

Redundant computation, commonly-used
technique against fault injections

Enforcing computation ordering

12 / 14



Applications

Enforcing countermeasures requiring value preservation

int redundant_add(int a) {
int a_dup = opacify(a);
int res = a + 42;
int res_dup = a_dup + 42;
if (res != res_dup)
fault_handler();

return res;
}

Redundant computation, commonly-used
technique against fault injections

Enforcing computation ordering

12 / 14



Applications

Enforcing countermeasures requiring value preservation

int redundant_add(int a) {
int a_dup = opacify(a);
int res = a + 42;
int res_dup = a_dup + 42;
if (res != res_dup)
fault_handler();

return res;
}

Redundant computation, commonly-used
technique against fault injections

int ct_sel(bool b, int x, int y) {

return b ? x : y;
}

Selecting between two values without jump con-
ditioned by secret value

Enforcing computation ordering

12 / 14



Applications

Enforcing countermeasures requiring value preservation

int redundant_add(int a) {
int a_dup = opacify(a);
int res = a + 42;
int res_dup = a_dup + 42;
if (res != res_dup)
fault_handler();

return res;
}

Redundant computation, commonly-used
technique against fault injections

int ct_sel(bool b, int x, int y) {
signed m = 0 - b;
return (x & m) | (y & ~m);

}

Selecting between two values without jump con-
ditioned by secret value

Enforcing computation ordering

12 / 14



Applications

Enforcing countermeasures requiring value preservation

int redundant_add(int a) {
int a_dup = opacify(a);
int res = a + 42;
int res_dup = a_dup + 42;
if (res != res_dup)
fault_handler();

return res;
}

Redundant computation, commonly-used
technique against fault injections

int ct_sel(bool b, int x, int y) {
signed m = opacify(0 - b);
return (x & m) | (y & ~m);

}

Selecting between two values without jump con-
ditioned by secret value

Enforcing computation ordering

12 / 14



Applications

Enforcing countermeasures requiring value preservation

Enforcing computation ordering

12 / 14



Applications

Enforcing countermeasures requiring value preservation

Enforcing computation ordering

int mask_swap(int mk, int m) {
int n = rand();
int tmp = mk ^ n;
mk = tmp ^ m;
return mk;

}

Enforcing specific evaluation order of
associative operations

12 / 14



Applications

Enforcing countermeasures requiring value preservation

Enforcing computation ordering

int mask_swap(int mk, int m) {
int n = rand();
int tmp = opacify(mk ^ n);
mk = tmp ^ m;
return mk;

}

Enforcing specific evaluation order of
associative operations

12 / 14



Applications

Enforcing countermeasures requiring value preservation

Enforcing computation ordering

int mask_swap(int mk, int m) {
int n = rand();
int tmp = opacify(mk ^ n);
mk = tmp ^ m;
return mk;

}

Enforcing specific evaluation order of
associative operations

int add(int x, int y) {

int res = x;

res += y;

return res;
}

Enforcing proper interleaving of counter incre-
mentation and original code

12 / 14



Applications

Enforcing countermeasures requiring value preservation

Enforcing computation ordering

int mask_swap(int mk, int m) {
int n = rand();
int tmp = opacify(mk ^ n);
mk = tmp ^ m;
return mk;

}

Enforcing specific evaluation order of
associative operations

int add(int x, int y) {
int cnt = 0;
int res = x;

res += y;

return res;
}

Enforcing proper interleaving of counter incre-
mentation and original code

12 / 14



Applications

Enforcing countermeasures requiring value preservation

Enforcing computation ordering

int mask_swap(int mk, int m) {
int n = rand();
int tmp = opacify(mk ^ n);
mk = tmp ^ m;
return mk;

}

Enforcing specific evaluation order of
associative operations

int add(int x, int y) {
int cnt = 0;
int res = x;
cnt++;
res += y;

cnt++;

return res;
}

Enforcing proper interleaving of counter incre-
mentation and original code

12 / 14



Applications

Enforcing countermeasures requiring value preservation

Enforcing computation ordering

int mask_swap(int mk, int m) {
int n = rand();
int tmp = opacify(mk ^ n);
mk = tmp ^ m;
return mk;

}

Enforcing specific evaluation order of
associative operations

int add(int x, int y) {
int cnt = 0;
int res = x;
cnt++;
res += y;

cnt++;
if (cnt != 2)
fault_handler();

return res;
}

Enforcing proper interleaving of counter incre-
mentation and original code

12 / 14



Applications

Enforcing countermeasures requiring value preservation

Enforcing computation ordering

int mask_swap(int mk, int m) {
int n = rand();
int tmp = opacify(mk ^ n);
mk = tmp ^ m;
return mk;

}

Enforcing specific evaluation order of
associative operations

int add(int x, int y) {
int cnt = 0;
int res = opacify(x, cnt);
cnt = opacify(cnt, res) + 1;
res = opacify(res, cnt)

+ opacify(y, cnt);
cnt = opacify(cnt, res) + 1;
if (cnt != 2)
fault_handler();

return res;
}

Enforcing proper interleaving of counter incre-
mentation and original code

12 / 14



Applications

Enforcing countermeasures requiring value preservation

Enforcing computation ordering

int mask_swap(int mk, int m) {
int n = rand();
int tmp = opacify(mk ^ n);
mk = tmp ^ m;
return mk;

}

Enforcing specific evaluation order of
associative operations

int add(int x, int y) {
int cnt = 0;
int res = opacify(x, cnt);
cnt = opacify(cnt, res) + 1;
res = opacify(res, cnt)

+ opacify(y, cnt);
cnt = opacify(cnt, res) + 1;
if (cnt != 2)
fault_handler();

return res;
}

Enforcing proper interleaving of counter incre-
mentation and original code

12 / 14



Validation and Performance Evaluation

Attack Side-channel Data remanence Fault injection

Protection Masking of Constant-time Inserting code to Inserting redundant data
secret data selection erase secret data and/or protection code

Property

Instruction No jump Presence of Interleaving of Presence of
ordering in conditioned sensitive functional and redundant data
masking by secret memory data protection code detecting fault
operations value erasure injections
mask-aes ct-rsa erasure-rsa-enc sci-pinApplication mask-swap ct-montgomery erasure-rsa-dec sci-aes loop-pin

Targets: x86-64 + ARMv7-M/Thumb-2, compiled at -01/2/3/s/z

Validation:

automated checking of observation integrity and ordering

manual inspection of security countermeasure integrity

Performance Evaluation: comparison with other solutions:

unoptimized code → speedup with harmonic mean of 2.8

embedding I/O effects into observation intrinsics to guarantee their
preservation → speedup with harmonic mean of 1.3

13 / 14



Validation and Performance Evaluation

Attack Side-channel Data remanence Fault injection

Protection Masking of Constant-time Inserting code to Inserting redundant data
secret data selection erase secret data and/or protection code

Property

Instruction No jump Presence of Interleaving of Presence of
ordering in conditioned sensitive functional and redundant data
masking by secret memory data protection code detecting fault
operations value erasure injections
mask-aes ct-rsa erasure-rsa-enc sci-pinApplication mask-swap ct-montgomery erasure-rsa-dec sci-aes loop-pin

Targets: x86-64 + ARMv7-M/Thumb-2, compiled at -01/2/3/s/z

Validation:
automated checking of observation integrity and ordering

manual inspection of security countermeasure integrity

Performance Evaluation: comparison with other solutions:

unoptimized code → speedup with harmonic mean of 2.8

embedding I/O effects into observation intrinsics to guarantee their
preservation → speedup with harmonic mean of 1.3

13 / 14



Validation and Performance Evaluation

Attack Side-channel Data remanence Fault injection

Protection Masking of Constant-time Inserting code to Inserting redundant data
secret data selection erase secret data and/or protection code

Property

Instruction No jump Presence of Interleaving of Presence of
ordering in conditioned sensitive functional and redundant data
masking by secret memory data protection code detecting fault
operations value erasure injections
mask-aes ct-rsa erasure-rsa-enc sci-pinApplication mask-swap ct-montgomery erasure-rsa-dec sci-aes loop-pin

Targets: x86-64 + ARMv7-M/Thumb-2, compiled at -01/2/3/s/z

Validation:
automated checking of observation integrity and ordering

manual inspection of security countermeasure integrity

Performance Evaluation: comparison with other solutions:

unoptimized code → speedup with harmonic mean of 2.8

embedding I/O effects into observation intrinsics to guarantee their
preservation → speedup with harmonic mean of 1.3

13 / 14



Validation and Performance Evaluation

Attack Side-channel Data remanence Fault injection

Protection Masking of Constant-time Inserting code to Inserting redundant data
secret data selection erase secret data and/or protection code

Property

Instruction No jump Presence of Interleaving of Presence of
ordering in conditioned sensitive functional and redundant data
masking by secret memory data protection code detecting fault
operations value erasure injections
mask-aes ct-rsa erasure-rsa-enc sci-pinApplication mask-swap ct-montgomery erasure-rsa-dec sci-aes loop-pin

Targets: x86-64 + ARMv7-M/Thumb-2, compiled at -01/2/3/s/z

Validation:
automated checking of observation integrity and ordering

manual inspection of security countermeasure integrity

Performance Evaluation: comparison with other solutions:
unoptimized code → speedup with harmonic mean of 2.8

embedding I/O effects into observation intrinsics to guarantee their
preservation → speedup with harmonic mean of 1.3

13 / 14



Validation and Performance Evaluation

Attack Side-channel Data remanence Fault injection

Protection Masking of Constant-time Inserting code to Inserting redundant data
secret data selection erase secret data and/or protection code

Property

Instruction No jump Presence of Interleaving of Presence of
ordering in conditioned sensitive functional and redundant data
masking by secret memory data protection code detecting fault
operations value erasure injections
mask-aes ct-rsa erasure-rsa-enc sci-pinApplication mask-swap ct-montgomery erasure-rsa-dec sci-aes loop-pin

Targets: x86-64 + ARMv7-M/Thumb-2, compiled at -01/2/3/s/z

Validation:
automated checking of observation integrity and ordering

manual inspection of security countermeasure integrity

Performance Evaluation: comparison with other solutions:
unoptimized code → speedup with harmonic mean of 2.8

embedding I/O effects into observation intrinsics to guarantee their
preservation → speedup with harmonic mean of 1.3

13 / 14



Conclusion

Transformation-independent and future-proof mechanism to preserve
security countermeasures through optimizing compilation

Formal model of opaque observations and their preservation

Stronger guarantees and higher performance than current practice

Perspective: contribute this work to the community and build a
compilation framework upon

14 / 14


