Secure Optimization Through Opaque Observations

Son Tuan Vu Karine Heydemann
Sorbonne Université
Laboratoire d'Informatique de Paris 6

Arnaud de Grandmaison
Arm

Albert Cohen
Google Al

16 March 2021

1/14

Background and Motivation: WYSINWYX phenomenon

@ Assuming a functionally-correct, well-defined program

@ Mismatch between

@ Behavior intended by the programmer (source code)
@ What is actually executed by the processor (machine code)

@ Open issue for security engineering: e.g. cryptographic mask changing
(so that observable results are statistically uncorrelated to secret data)

secret _key © m secret_key © m

PBe—m PBe—n

secret _key (leaked) secret_key ® m @ n

PBe——n PBe—m

secret _key © n secret_key ® n

2/14

Background and Motivation: WYSINWYX phenomenon

@ Assuming a functionally-correct, well-defined program

@ Mismatch between
@ Behavior intended by the programmer (source code)
@ What is actually executed by the processor (machine code)
@ Open issue for security engineering: e.g. cryptographic mask changing
(so that observable results are statistically uncorrelated to secret data)

int mask_swap(int mk, int m) {
int n = rand();
mk = (mk * n) ~ m;
return mk;

}

2/14

Background and Motivation: WYSINWYX phenomenon

@ Assuming a functionally-correct, well-defined program

@ Mismatch between
@ Behavior intended by the programmer (source code)

@ What is actually executed by the processor (machine code)
@ Open issue for security engineering: e.g. cryptographic mask changing
(so that observable results are statistically uncorrelated to secret data)

secret _key © m
1
1

int mask_swap(int ﬁk, int m) {
int n = rand();
- - - De-masking of old mask m

L Re-masking of secret
key with new mask n

}

2/14

Background and Motivation: WYSINWYX phenomenon

@ Assuming a functionally-correct, well-defined program

@ Mismatch between
@ Behavior intended by the programmer (source code)
@ What is actually executed by the processor (machine code)
@ Open issue for security engineering: e.g. cryptographic mask changing
(so that observable results are statistically uncorrelated to secret data)

Underlying property of protection:
Re-masking before De-masking

int mask_swap(int mk, int m) {
int n = rand();

mk ={(mk ~ n)! A my<----mm e - - - De-masking of old mask m

S N L Re-masking of secret
key with new mask n

2/14

Background and Motivation: WYSINWYX phenomenon

@ Assuming a functionally-correct, well-defined program

@ Mismatch between

@ Behavior intended by the programmer (source code)
@ What is actually executed by the processor (machine code)

@ Open issue for security engineering: e.g. cryptographic mask changing
(so that observable results are statistically uncorrelated to secret data)

Expression reordering

int mask_swap(int mk, int m) {
int n = rand();

return mk;

}

int mask_swap(int mk, int m) {
int n = rand();
mk = (mk ~ m) ~ n;
return mk;

}

2/14

Background and Motivation: WYSINWYX phenomenon

@ Assuming a functionally-correct, well-defined program

@ Mismatch between

@ Behavior intended by the programmer (source code)
@ What is actually executed by the processor (machine code)

@ Open issue for security engineering: e.g. cryptographic mask changing
(so that observable results are statistically uncorrelated to secret data)

Property not respected

Expression reordering

int mask_swap(int mk, int m) {
int n = rand();

return mk;

}

int mask_swap(int mk, int m) {
int n = rand();
mk = (mk ~ m) ~ n;
return mk;

}

2/14

Background and Motivation: WYSINWYX phenomenon

@ Assuming a functionally-correct, well-defined program

@ Mismatch between

@ Behavior intended by the programmer (source code)
@ What is actually executed by the processor (machine code)

@ Open issue for security engineering: e.g. cryptographic mask changing
(so that observable results are statistically uncorrelated to secret data)

int mask_swap(int mk, int m) {
int n_= rand();_ Use of temporary
intmp = mk ~ ny <€---------- --- variable to fix
mk = (tmp " m; evaluation order
return mk;

}

2/14

Background and Motivation: WYSINWYX phenomenon

@ Assuming a functionally-correct, well-defined program

@ Mismatch between

@ Behavior intended by the programmer (source code)
@ What is actually executed by the processor (machine code)

@ Open issue for security engineering: e.g. cryptographic mask changing
(so that observable results are statistically uncorrelated to secret data)

Temporary variable optimized out

+
Expression reordering

int mask_swap(int mk, int m) { int mask_swap(int mk, int m) {
int n = rand(); int n = rand();
int mp = mk ~ n; mk =mk ~m ~ n;
mk =tmp/ * m; return mk;
return mk; }
}

2/14

Background and Motivation: WYSINWYX phenomenon

@ Assuming a functionally-correct, well-defined program

@ Mismatch between

@ Behavior intended by the programmer (source code)
@ What is actually executed by the processor (machine code)

@ Open issue for security engineering: e.g. cryptographic mask changing
(so that observable results are statistically uncorrelated to secret data)
Property not respected
Temporary variable optimized out

+
Expression reordering

int mask_swap(int mk, int m) { int mask_swap(int mk, int m) {
int n = rand(); int n = rand();
int tmp = mk ~ n; mk = mk ~m ~ n;
mk =tmp/ * m; return mk;
return mk; }
}

2/14

Background and Motivation: WYSINWYX phenomenon

@ Assuming a functionally-correct, well-defined program

@ Mismatch between

@ Behavior intended by the programmer (source code)
@ What is actually executed by the processor (machine code)

@ Open issue for security engineering: e.g. cryptographic mask changing
(so that observable results are statistically uncorrelated to secret data)

Coding trick: volatile + asm

int mask_swap(int mk, int m) {
int n = rand();

return mk;

int mask_swap(int mk, int m) {
int n = rand();

__asm__ __volatile__
("":::"memory");

mk = (tmp! ~ m;

return mk;

Background and Motivation: WYSINWYX phenomenon

@ Assuming a functionally-correct, well-defined program

@ Mismatch between

@ Behavior intended by the programmer (source code)
@ What is actually executed by the processor (machine code)

@ Open issue for security engineering: e.g. cryptographic mask changing
(so that observable results are statistically uncorrelated to secret data)

Coding trick: volatile + asm

Fragile and not portable:
volatile int may be ignored

int mask_swap(int mk, int m) {
int n = rand();

return mk;

int mask_swap(int mk, int m) {
int n = rand();

__asm__ __volatile__
("":::"memory");

mk = (tmp! ~ m;

return mk;

Background and Motivation: WYSINWYX phenomenon

@ Assuming a functionally-correct, well-defined program

@ Mismatch between

@ Behavior intended by the programmer (source code)
@ What is actually executed by the processor (machine code)

@ Open issue for security engineering: e.g. cryptographic mask changing
(so that observable results are statistically uncorrelated to secret data)

int mask_swap(int mk, int m) {
int n = rand(); How to reliably prevent the compiler
int \’tmpﬁ= Mk ~ N <-----mmmm- -- from optimizing out tmp thus
mk =tmp/ * m; respect the evaluation order?
return mk;

}

2/14

Problem Statement

@ Approach: make the underlying properties of security countermeasures
explicit and instruct the compiler to preserve it

o Objective: preserving properties throughout the optimizing
compilation flow

@ Constraint: aim for the least intrusive mechanism in order to
implement in production compilers

3/14

Property Preservation: Intuition and Challenges

int mask_swap(int mk, int m) {

b
return mk;

4/14

Property Preservation: Intuition and Challenges

int mask_swap(int mk, int m) {

b
return mk;

Capture the wanted value

4/14

Property Preservation: Intuition and Challenges

int mask_swap(int mk, int m) {

mk = tmp' ~ m;

Capture the wanted value

Make sure it is used next

4/14

Property Preservation: Intuition and Challenges

int mask_swap(int mk, int m) {

mk = tmp' ~ m;

@ Observation semantics?

Capture the wanted value

Make sure it is used next

@ Constraints induced by observations on program transformations?

@ Preservation of observations and induced constraints: how to make
them transformation-independent?

4/14

Program Operational Semantics

e State o = ({SSAValues, References, Memory}, ProgramCounter)

@ Event e = o ~» o', i = Inst(e)

Program semantics C[P]() = function mapping inputs to outputs

Input and output operations are conducted through I/O events

[/O events from the same |/O stream are totally ordered

Execution for input I E[P](/) = ooepoie107 . ..

= induces a partial ordering relation -3 on I/O events

5/14

Observation Semantics

@ Observation is event associated with the execution of instruction
snapshot(vl, v2, ..., vn)

— captures the observed values v1, v2, ..., vn into a partial
observation state

— can be traced down to machine code for verification, debugging,
monitoring, etc.

6/14

Observation Semantics

@ Observation is event associated with the execution of instruction
snapshot(vl, v2, ..., vn)

— captures the observed values v1, v2, ..., vn into a partial
observation state

— can be traced down to machine code for verification, debugging,
monitoring, etc.

e Additional relations involving observations:

6/14

Observation Semantics

@ Observation is event associated with the execution of instruction
snapshot(vl, v2, ..., vn)

— captures the observed values v1, v2, ..., vn into a partial
observation state

— can be traced down to machine code for verification, debugging,
monitoring, etc.

e Additional relations involving observations:

of ..
e observe-from —: data dependences over events defining observed
values and the observation of these values

6/14

Observation Semantics

@ Observation is event associated with the execution of instruction
snapshot(vl, v2, ..., vn)

— captures the observed values v1, v2, ..., vn into a partial
observation state

— can be traced down to machine code for verification, debugging,
monitoring, etc.
e Additional relations involving observations:

of ..
e observe-from —: data dependences over events defining observed
values and the observation of these values

e observation ordering 23: data or control dependences over observations

(1)@ =b ~ c; lobserve-from

(2) sn apsho (a); observation ordering
(3) @) a+42;

(4) snapshot(a)

6/14

Observation Semantics

@ Observation is event associated with the execution of instruction
snapshot(vl, v2, ..., vn)

— captures the observed values v1, v2, ..., vn into a partial
observation state

— can be traced down to machine code for verification, debugging,
monitoring, etc.

e Additional relations involving observations:

of ..
e observe-from —: data dependences over events defining observed
values and the observation of these values

e observation ordering 23: data or control dependences over observations

. . . . f
@ Observation preservation = preserving partial states, — and =

— preserving observations induces additional constraints on program
transformations

6/14

Program Transformations

@ Transformation 7 induces an event map o, relating events before and
after transformation

e Valid transformation preserves program semantics C[P]() = C[7(P)]()
(i.e. preserves |/O events and their partial ordering relations =)

7/14

Program Transformations

@ Transformation 7 induces an event map o, relating events before and
after transformation

e Valid transformation preserves program semantics C[P]() = C[7(P)]()
(i.e. preserves |/O events and their partial ordering relations =)

Assuming the compiler implements valid transformations, how to make
them observation-preserving (i.e. preserving partial states, % and =2)?

7/14

Observation Preservation: Opacification

o Opacification is event associated with the execution of instruction
vl’'= opacify(vl, v2, ..., vn)

— captures the observed values v1, v2, ..., vn into a partial
observation state

— returns a value v1’= v1, but the compiler does not know about it

@ v1’ opaque to program analyses and transformations

e compiler sees a statically unknown yet functionally deterministic value

e compiler does not assume any relation with the original value v1

8/14

Transformed Opacification

Given a program P, an input /, an opacification ey, € E[P](/),
Inst(eop) = (v1’ = opacify(vl, ..., vn)), and a valid transformation 7.

Let “% denote a data or control dependence relation between two events.

Given an event e € E[P](/) such that e,, =% e.

9/14

Transformed Opacification

Given a program P, an input /, an opacification ey, € E[P](/),
Inst(eop) = (v1’ = opacify(vl, ..., vn)), and a valid transformation 7.

Let “% denote a data or control dependence relation between two events.

Given an event e € E[P](/) such that e,, =% e.

Q e c&[r(P)(I), exr e = Fe,, € E[T(P)(), eop 7 €5, A €, e

preservation of e dependent on eop implies preservation of eop

9/14

Transformed Opacification

Given a program P, an input /, an opacification ey, € E[P](/),
Inst(eop) = (v1’ = opacify(vl, ..., vn)), and a valid transformation 7.

Let “% denote a data or control dependence relation between two events.

Given an event e € E[P](/) such that e,, =% e.

Q e c&[r(P)(I), exr e = Fe,, € E[T(P)(), eop 7 €5, A €, e

preservation of e dependent on eop implies preservation of eop

Q ey, € E[T(P)(]), eop X+ €,, == e, is also an opacification

if preserved, opacifications are always transformed into opacifications

9/14

Transformed Opacification

Given a program P, an input /, an opacification ey, € E[P](/),
Inst(eop) = (v1’ = opacify(vl, ..., vn)), and a valid transformation 7.

Let “% denote a data or control dependence relation between two events.

Given an event e € E[P](/) such that e,, =% e.

Q e c&[r(P)(I), exr e = Fe,, € E[T(P)(), eop 7 €5, A €, e

preservation of e dependent on eop implies preservation of eop

Q ey, € E[T(P)(]), eop X+ €,, == e, is also an opacification

if preserved, opacifications are always transformed into opacifications

© 3e, € E[T(P)()), eop X+ €,, == v1,...,vn are also preserved in 7(P)

all values used by opacification (i.e. observed values) are always preserved

9/14

Transformed Opacification

Given a program P, an input /, an opacification ey, € E[P](/),
Inst(eop) = (v1’ = opacify(vl, ..., vn)), and a valid transformation 7.

Let “% denote a data or control dependence relation between two events.

Given an event e € E[P](/) such that e,, =% e.

Q e c&[r(P)(I), exr e = Fe,, € E[T(P)(), eop 7 €5, A €, e

preservation of e dependent on eop implies preservation of eop

Q ey, € E[T(P)(]), eop X+ €,, == e, is also an opacification

if preserved, opacifications are always transformed into opacifications

© 3e, € E[T(P)()), eop X+ €,, == v1,...,vn are also preserved in 7(P)

all values used by opacification (i.e. observed values) are always preserved

= properties directly induced by the definition of “opacity”

9/14

Observation Ordering Preservation: Opaque Chains
Opaque Chain:

@ Used to enforce opacification preservation

= preserving observations and partial states

@ Used to enforce opacification ordering preservation

. of oo .
= preserving — and — relations

10/14

Observation Ordering Preservation: Opaque Chains
Opaque Chain:

@ Used to enforce opacification preservation

= preserving observations and partial states

@ Used to enforce opacification ordering preservation

. of oo .
= preserving — and — relations

— Opaque Chain = Opacifications in Dependence Chain
+ Opacity-Preserving Instruction

10/14

Observation Ordering Preservation: Opaque Chains
Opaque Chain:

@ Used to enforce opacification preservation

= preserving observations and partial states

@ Used to enforce opacification ordering preservation

. of oo .
= preserving — and — relations

— Opaque Chain = Opacifications in Dependence Chain
+ Opacity-Preserving Instruction

int main() {
int a = get_int();
int opaque_a = opacify(a);
int b = opaque_a + 1;
return b;

10/14

Observation Ordering Preservation: Opaque Chains
Opaque Chain:

@ Used to enforce opacification preservation

= preserving observations and partial states

@ Used to enforce opacification ordering preservation

. of oo .
= preserving — and — relations

— Opaque Chain = Opacifications in Dependence Chain
+ Opacity-Preserving Instruction

int main() { Opacification

1
Tail of Chain

10/14

Observation Ordering Preservation: Opaque Chains
Opaque Chain:

@ Used to enforce opacification preservation

= preserving observations and partial states

@ Used to enforce opacification ordering preservation

. of oo .
= preserving — and — relations

— Opaque Chain = Opacifications in Dependence Chain
+ Opacity-Preserving Instruction

int main() {
int a = get_int();
int opaque_a = opacify(a);
int b = opaque_a * 0;
return b;

10/14

Observation Ordering Preservation: Opaque Chains
Opaque Chain:

@ Used to enforce opacification preservation

= preserving observations and partial states

@ Used to enforce opacification ordering preservation

. of oo .
= preserving — and — relations

— Opaque Chain = Opacifications in Dependence Chain
+ Opacity-Preserving Instruction

void f() { . Opacification
int a_= get_int(); i

int iopaque_a = opacify(a); <---F--------------- !

1
Tail of Chain

10/14

Observation Ordering Preservation: Opaque Chains
Opaque Chain:

@ Used to enforce opacification preservation

= preserving observations and partial states

@ Used to enforce opacification ordering preservation

. of oo .
= preserving — and — relations

— Opaque Chain = Opacifications in Dependence Chain
+ Opacity-Preserving Instruction

— If the tailing instruction is preserved, the opaque chain will also
be preserved

Opaque Chain preserved = Opacifications + Ordering preserved

10/14

Putting it to Work

Implementation in latest LLVM with minimal changes to individual passes
— transformation-independent and future-proof mechanism

Source code [>

Intrinsic
generation

Front-end

Middle
end

Intrinsic
lowering

Back-end

Pseudo-inst.
removal

Observation
emission

‘ Observation extra info = LLVM metadata

> | Binary code

— no additional instructions generated in machine code

11/14

Applications

e Enforcing countermeasures requiring value preservation

12/14

Applications

e Enforcing countermeasures requiring value preservation

int redundant_add(int a) {

int res = a + 42;

return res;

}

Redundant computation, commonly-used
technique against fault injections

12/14

Applications

e Enforcing countermeasures requiring value preservation

int redundant_add(int a) {
int a_dup = a;
int res = a + 42;

return res;

}

Redundant computation, commonly-used
technique against fault injections

12/14

Applications

e Enforcing countermeasures requiring value preservation

int redundant_add(int a) {
int a_dup = a;
int res = a + 42;
int res_dup = a_dup + 42;

return res;

}

Redundant computation, commonly-used
technique against fault injections

12/14

Applications

e Enforcing countermeasures requiring value preservation

int redundant_add(int a) {
int a_dup = a;
int res = a + 42;
int res_dup = a_dup + 42;
if (res != res_dup)
fault_handler();
return res;

}

Redundant computation, commonly-used
technique against fault injections

12/14

Applications

e Enforcing countermeasures requiring value preservation

int redundant_add(int a) {

int a_dup = opacifyi(a);

int res = a + 42;
int res_dup = a_dup + 42;

return res;

}

Redundant computation, commonly-used
technique against fault injections

12/14

Applications

e Enforcing countermeasures requiring value preservation

int redundant_add(int a) { int ct_sel(bool b, int x, int y) {
int a_dup = iopacifyia);
int res = a + 42; return b ? x : y;
int res_dup = a_dup + 42; }
if_(res_!= res_dup)
’%ault handler(); Selecting between two values without jump con-
return res; ditioned by secret value
}

Redundant computation, commonly-used
technique against fault injections

12/14

Applications

e Enforcing countermeasures requiring value preservation

int redundant_add(int a) { int ct_sel(bool b, int x, int y) {
int a_dup = (opacifyi(a); signed m = 0 - b;
int res = a + 42; return (x & m) | (y & ~m);
int res_dup = a_dup + 42; }
if (res !'= re%,dum
’%ault handler()! Selecting between two values without jump con-
return res; g ditioned by secret value
}

Redundant computation, commonly-used
technique against fault injections

12/14

Applications

e Enforcing countermeasures requiring value preservation

int redundant_add(int a) { int ct_sel(bool b, int x, int y) {
int a_dup = (opacifyi(a); signed m = opacify(0 - b);
int res = a + 42; return) (x & m) | (y & ~m);
int res_dup = a_dup + 42; Yy
if_(res != re%,dum
‘fault_handler()! Selecting between two values without jump con-
return res; g ditioned by secret value
}

Redundant computation, commonly-used
technique against fault injections

12/14

Applications

e Enforcing countermeasures requiring value preservation

@ Enforcing computation ordering

12/14

Applications

e Enforcing countermeasures requiring value preservation

@ Enforcing computation ordering

int mask_swap(int mk, int m) {
int n = rand();
int tmp = mk ~ n;
mk = tmp ~ m;
return mk;

}

Enforcing specific evaluation order of
associative operations

12/14

Applications

e Enforcing countermeasures requiring value preservation

@ Enforcing computation ordering

int mask_swap(int mk, int m) {
int n = rand();

}

Enforcing specific evaluation order of
associative operations

12/14

Applications

e Enforcing countermeasures requiring value preservation

@ Enforcing computation ordering

int mask_swap(int mk, int m) { int add(int x, int y) {
int n = rand();
int tmp = lopacify(mk ~ n); int res = x;
mk = tmp ~m;
return; mk; res +=y;
}

Enforcing specific evaluation order of
associative operations

return res;

}

Enforcing proper interleaving of counter incre-
mentation and original code

12/14

Applications

e Enforcing countermeasures requiring value preservation

@ Enforcing computation ordering

int mask_swap(int mk, int m) { int add(int x, int y) {
int n = rand();_ int cnt = 0;
int tmp = lopacify(mk ~ n); int res = x;
mk = tmp ~m;
return; mk; res +=y;
}

Enforcing specific evaluation order of
associative operations

return res;

}

Enforcing proper interleaving of counter incre-
mentation and original code

12/14

Applications

e Enforcing countermeasures requiring value preservation

@ Enforcing computation ordering

int mask_swap(int mk, int m) { int add(int x, int y) {
int n = rand();_ int cnt = 0;
int tmp = lopacify(mk ~ n); int res = x;
mkff;mp ~mp cnt++;
return; mk; res +=y;
}
cnt++;

Enforcing specific evaluation order of
associative operations

return res;

}

Enforcing proper interleaving of counter incre-
mentation and original code

12/14

Applications

e Enforcing countermeasures requiring value preservation

@ Enforcing computation ordering

int mask_swap(int mk, int m) { int add(int x, int y) {
int n = rand();_ int cnt = 0;
int tmp = lopacify(mk ~ n); int res = x;
mkff;mp ~mp cnt++;
return; mk; res +=y;
}
cnt++;
Enforcing specific evaluation order of if (cnt !'= 2)
associative operations fault_handler();
return res;
}

Enforcing proper interleaving of counter incre-
mentation and original code

12/14

Applications

e Enforcing countermeasures requiring value preservation

@ Enforcing computation ordering

int mask_swap(int mk, int m) {
int n = rand();

}

Enforcing specific evaluation order of
associative operations

int add(int x, int y) {
int cnt = 0;
int res = opacify(x, cnt);
cnt opacify(cnt, res) + 1;
res opacify(res, cnt)
+ opacify(y, cnt);
cnt = opacify(cnt, res)
if (cnt !'= 2)
fault_handler();
return res;

+ 1;

}

Enforcing proper interleaving of counter incre-

mentation and original code

12/14

Applications

e Enforcing countermeasures requiring value preservation

@ Enforcing computation ordering

int mask_swap(int mk, int m) { int add(int x, int y) {
int n = rand();_ int cnt =0;
int tmp = lopacifyi(mk ~ n); int res =\qpac1ff(x cnt);
mgffymp ~mp cnt = jopacify(cnt, res) + 1;
return; mk; res =\9g§g;fyjres cnt)
} + opacify(y, cnt);
cnt = lopacify(cnt, res) + 1;
Enforcing specific evaluation order of if (cnt '= 2)
associative operations f{:éu’l-’t’ﬁa’na{e’r’()i

return res;

}

Enforcing proper interleaving of counter incre-
mentation and original code

12/14

Validation and Performance Evaluation

Fault injection

Attack Side-channel Data remanence
. Masking of | Constant-time | Inserting code to Inserting redundant data
Protection . .
secret data selection erase secret data and/or protection code
Instruction No jump Presence of Interleaving of Presence of
Propert ordering in conditioned sensitive functional and | redundant data
perty masking by secret memory data protection code | detecting fault
operations value erasure injections
. mask-aes ct-rsa erasure-rsa-enc sci-pin .
Application . loop-pin
mask-swap | ct-montgomery | erasure-rsa-dec sci-aes

Targets: x86-64 + ARMv7-M/Thumb-2, compiled at -01/2/3/s/z

13/14

Validation and Performance Evaluation

Fault injection

Attack Side-channel Data remanence
. Masking of | Constant-time | Inserting code to Inserting redundant data
Protection . .
secret data selection erase secret data and/or protection code
Instruction No jump Presence of Interleaving of Presence of
Propert ordering in conditioned sensitive functional and | redundant data
perty masking by secret memory data protection code | detecting fault
operations value erasure injections
. mask-aes ct-rsa erasure-rsa-enc sci-pin .
Application . loop-pin
mask-swap | ct-montgomery | erasure-rsa-dec sci-aes

Targets: x86-64 + ARMv7-M/Thumb-2, compiled at -01/2/3/s/z

o Validation:

e automated checking of observation integrity and ordering

e manual inspection of security countermeasure integrity

13/14

Validation and Performance Evaluation

Fault injection

Attack Side-channel Data remanence
. Masking of | Constant-time | Inserting code to Inserting redundant data
Protection . .
secret data selection erase secret data and/or protection code
Instruction No jump Presence of Interleaving of Presence of
Propert ordering in conditioned sensitive functional and | redundant data
perty masking by secret memory data protection code | detecting fault
operations value erasure injections
. mask-aes ct-rsa erasure-rsa-enc sci-pin .
Application . loop-pin
mask-swap | ct-montgomery | erasure-rsa-dec sci-aes

Targets: x86-64 + ARMv7-M/Thumb-2, compiled at -01/2/3/s/z

o Validation:
e automated checking of observation integrity and ordering

e manual inspection of security countermeasure integrity

@ Performance Evaluation: comparison with other solutions:

13/14

Validation and Performance Evaluation

Fault injection

Attack Side-channel Data remanence
. Masking of | Constant-time | Inserting code to Inserting redundant data
Protection . .
secret data selection erase secret data and/or protection code
Instruction No jump Presence of Interleaving of Presence of
Propert ordering in conditioned sensitive functional and | redundant data
perty masking by secret memory data protection code | detecting fault
operations value erasure injections
. mask-aes ct-rsa erasure-rsa-enc sci-pin .
Application . loop-pin
mask-swap | ct-montgomery | erasure-rsa-dec sci-aes

Targets: x86-64 + ARMv7-M/Thumb-2, compiled at -01/2/3/s/z

o Validation:
e automated checking of observation integrity and ordering

e manual inspection of security countermeasure integrity

@ Performance Evaluation: comparison with other solutions:

e unoptimized code — speedup with harmonic mean of 2.8

13/14

Validation and Performance Evaluation

Fault injection

Attack Side-channel Data remanence
. Masking of | Constant-time | Inserting code to Inserting redundant data
Protection . .
secret data selection erase secret data and/or protection code
Instruction No jump Presence of Interleaving of Presence of
Propert ordering in conditioned sensitive functional and | redundant data
perty masking by secret memory data protection code | detecting fault
operations value erasure injections
. mask-aes ct-rsa erasure-rsa-enc sci-pin .
Application . loop-pin
mask-swap | ct-montgomery | erasure-rsa-dec sci-aes

Targets: x86-64 + ARMv7-M/Thumb-2, compiled at -01/2/3/s/z

o Validation:
e automated checking of observation integrity and ordering

e manual inspection of security countermeasure integrity

@ Performance Evaluation: comparison with other solutions:

e unoptimized code — speedup with harmonic mean of 2.8

o embedding 1/0O effects into observation intrinsics to guarantee their
preservation — speedup with harmonic mean of 1.3

13/14

Conclusion

@ Transformation-independent and future-proof mechanism to preserve
security countermeasures through optimizing compilation

@ Formal model of opaque observations and their preservation
@ Stronger guarantees and higher performance than current practice

@ Perspective: contribute this work to the community and build a
compilation framework upon

14 /14

