
Trail of Bits | Formal Methods for Computer Security 2021 | 16.03.2021

Testing and Verifying Smart
Contracts: From Theory to Practice

Formal Methods for Computer Security 2021

Trail of Bits | Formal Methods for Computer Security 2021 | 16.03.2021

Who Am I?

● Josselin Feist, josselin@trailofbits.com, @montyly

● Trail of Bits: trailofbits.com
● We help organizations build safer software
● R&D focused: we use the latest program analysis techniques

● McSema https://github.com/lifting-bits/mcsema

● Manticore https://github.com/trailofbits/manticore

● Slither https://github.com/crytic/slither

● Echidna https://github.com/crytic/echidna
2

mailto:josselin@trailofbits.com
https://twitter.com/montyly
https://www.trailofbits.com/
https://github.com/lifting-bits/mcsema
https://github.com/trailofbits/manticore
https://github.com/crytic/slither
https://github.com/crytic/echidna

Trail of Bits | Formal Methods for Computer Security 2021 | 16.03.2021

Goals

● What is a Blockchain?

● What is a smart contract?

● What program analyses are applied in industry?

● Current challenges and research opportunities

3

Trail of Bits | Formal Methods for Computer Security 2021 | 16.03.2021

Blockchain

Trail of Bits | Formal Methods for Computer Security 2021 | 16.03.2021

Blockchain

● Ledger: Growing list of records

5

Trail of Bits | Formal Methods for Computer Security 2021 | 16.03.2021

Blockchain

● Distributed ledger: All participants store all the data

● Decentralized consensus: Everyone agrees on the data

6

Trail of Bits | Formal Methods for Computer Security 2021 | 16.03.2021

Blockchain Application

● Bitcoin[1] (2009): First digital currency using blockchain
○ Solved the double spend problem

● Ethereum[2] (2015): Extended blockchain to run apps
○ Store & execute code

Bitcoin: distributed database => Ethereum: distributed VM

7

Trail of Bits | Formal Methods for Computer Security 2021 | 16.03.2021

Decentralized Application

8

Bob ran foo(0); it returned 42

Trail of Bits | Formal Methods for Computer Security 2021 | 16.03.2021

Decentralized Application

9

Bob ran foo(0); it returned 42

Bob ran foo(0);
it returned 42

Bob ran foo(0); it returned 42

Bob ran foo(0); it returned 42

Bob ran foo(0); it returned 42

Bob ran foo(0); it returned 42

Bob ran foo(0);
it returned 42

Bob ran foo(0);
it returned 42

Trail of Bits | Formal Methods for Computer Security 2021 | 16.03.2021

Smart Contracts

● Smart Contracts: Applications that run on a blockchain
○ Everyone executes and verifies it
○ Decentralized: nobody can stop or secretly modify data
○ => Ensures strong properties on your application

10

Trail of Bits | Formal Methods for Computer Security 2021 | 16.03.2021

Smart Contract Usages

● Digital currency is one example of an application
○ ICOs, Crowdfunding system
○ Game (ex: Poker, lotteries, ...)
○ Supply chain
○ …

11

Trail of Bits | Formal Methods for Computer Security 2021 | 16.03.2021

DeFi

● Decentralized Finance (DeFi)
○ Adapt financial primitives to a permissionless and trusted execution
○ Lending and trading protocols
○ Significant composability

12

[3]

Trail of Bits | Formal Methods for Computer Security 2021 | 16.03.2021

DeFi

● A lot of money is invested into smart contracts
○ ~$40-50B of value locked in major DeFi protocols [4]
○ Uniswap ~$36B in trading volume last month

■ ~5%-10% of crypto trades in decentralized exchanges

13

Trail of Bits | Formal Methods for Computer Security 2021 | 16.03.2021

Smart Contract Risks

● Smart contracts are programs = they have bugs

● Adversarial environment
○ Attacker can steal directly funds
○ Rely on cryptographic primitives to hide funds and launder money

● ~$200M stolen in 2020 through smart contract hacks [5]

14

Trail of Bits | Formal Methods for Computer Security 2021 | 16.03.2021

Ethereum Internals

Trail of Bits | Formal Methods for Computer Security 2021 | 16.03.2021

EVM

● Ethereum runs EVM bytecode
○ VM with <150 opcodes
○ 1 register (PC)
○ Stack-based

● Calling a function = making a transaction
○ It has a cost: gas, paid in ethers

● Bytecode cannot be updated (!)

16

Trail of Bits | Formal Methods for Computer Security 2021 | 16.03.2021

Solidity

● Smart contracts are typically written in Solidity
○ High-level language in “Javascript style”
○ Contracts organized as a set of methods
○ State = contract variables + balance (# ethers)

17

18

Solidity: Example
pragma solidity 0.8.0; // Compiler version
contract Bank{
 mapping(address => uint) private balances;

 constructor(uint initial_supply) public {
 balances[msg.sender] = initial_supply;
 }
 function transfer(address to, uint val) public {
 balances[msg.sender] -= val;
 balances[to] += val;
 }
 function balanceOf(address user) public view returns (uint){
 return balances[user];
 }
}

19

Solidity: Example
pragma solidity 0.8.0;
contract Bank{
 mapping(address => uint) private balances;

 constructor(uint initial_supply) public {
 balances[msg.sender] = initial_supply;
 }
 function transfer(address to, uint val) public {
 balances[msg.sender] -= val;
 balances[to] += val;
 }
 function balanceOf(address user) public view returns (uint){
 return balances[user];
 }
}

20

Solidity: Example
pragma solidity 0.8.0;
contract Bank{
 mapping(address => uint) private balances;

 constructor(uint initial_supply) public {
 balances[msg.sender] = initial_supply;
 }
 function transfer(address to, uint val) public {
 balances[msg.sender] -= val;
 balances[to] += val;
 }
 function balanceOf(address user) public view returns (uint){
 return balances[user];
 }
}

21

Solidity: Example
pragma solidity 0.8.0;
contract Bank{
 mapping(address => uint) private balances;

 constructor(uint initial_supply) public {
 balances[msg.sender] = initial_supply;
 }
 function transfer(address to, uint val) public {
 balances[msg.sender] -= val;
 balances[to] += val;
 }
 function balanceOf(address user) public view returns (uint){
 return balances[user];
 }
}

22

Solidity: Example
pragma solidity 0.8.0;
contract Bank{
 mapping(address => uint) private balances;

constructor(uint initial_supply) public {
 balances[msg.sender] = initial_supply;
 }
 function transfer(address to, uint val) public {
 balances[msg.sender] -= val;
 balances[to] += val;
 }
 function balanceOf(address user) public view returns (uint){
 return balances[user];
 }
}

23

Solidity: Example
pragma solidity 0.8.0;
contract Bank{
 mapping(address => uint) private balances;

 constructor(uint initial_supply) public {
 balances[msg.sender] = initial_supply;
 }
 function transfer(address to, uint val) public {
 balances[msg.sender] -= val;
 balances[to] += val;
 }
 function balanceOf(address user) public view returns (uint){
 return balances[user];
 }
}

Constructor

Public function

Constant function
(gas-free)

State variable

Trail of Bits | Formal Methods for Computer Security 2021 | 16.03.2021

Example Vulnerabilities

Trail of Bits | Formal Methods for Computer Security 2021 | 16.03.2021

● The DAO (2016)

● Re-enter in the contract before the balance is set to zero
○ Repeat n times => withdraws n times the original deposit

● ~$70 millions stolen

Reentrancy

25

 if(! (msg.sender.call.value(userBalance[msg.sender])())){
 throw;
 }

 userBalance[msg.sender] = 0;

http://hackingdistributed.com/2016/06/18/analysis-of-the-dao-exploit/

Trail of Bits | Formal Methods for Computer Security 2021 | 16.03.2021

Improperly restricted functions

● Parity Wallet (2017)
○ Widely used library for storing ethers

● Key function was callable by anyone
○ Someone destructed the contract
○ Broke all third-party integrations

● $300 million of frozen assets

26

https://www.parity.io/security-alert-2/

Trail of Bits | Formal Methods for Computer Security 2021 | 16.03.2021

Oracle manipulation

● Harvest Finance: DeFi yield aggregator (2020)
○ Users deposit assets, and Harvest invest funds into various protocols
○ Bug: incorrect usage of a price Oracle

■ Generate fake price, such that deposit to share ratio is increased

■ Deposit with fake ratio to get more share than expected

■ Replace with original price

■ Withdraw the share and received more than initial deposit

● ~$30M stolen

27

https://harvest.finance/

Trail of Bits | Formal Methods for Computer Security 2021 | 16.03.2021

Program analysis

Trail of Bits | Formal Methods for Computer Security 2021 | 16.03.2021

Program Analysis

● Smart contracts are small
○ <1,000 LoC

● Gas cost lead to bounded execution

● High value = require high confidence

29

Trail of Bits | Formal Methods for Computer Security 2021 | 16.03.2021

Program Analysis

● Fully automated
○ Detect common patterns
○ Static analysis / symbolic execution

● Semi-automated
○ Property-based approach
○ Fuzzing / symbolic execution / abstract interpretation / ...

● A lot of tools - not all maintained

30

Trail of Bits | Formal Methods for Computer Security 2021 | 16.03.2021

Fully automated

Trail of Bits | Formal Methods for Computer Security 2021 | 16.03.2021

Fully automated

● Static analysis
○ Slither [6]

■ ~100 detectors (~70 public)
■ +40 trophies

○ Maru
■ Closed source - SaaS (Mythx.io)

■ 28 detectors

32

https://github.com/crytic/slither
https://github.com/crytic/slither/blob/master/trophies.md
https://mythx.io/

Trail of Bits | Formal Methods for Computer Security 2021 | 16.03.2021

Fully automated - Slither

● Common flaws
○ Reentrancy, unprotected function, ...

● Many language-level issues
○ Variable shadowing, missing return statements, ...

33

Trail of Bits | Formal Methods for Computer Security 2021 | 16.03.2021

Fully automated

● Symbolic execution
○ Oyente [7] (< 10 detectors)

● Unmainted tools
○ Securify [8]
○ SmartCheck [9]

34

https://github.com/enzymefinance/oyente
http://github.com/eth-sri/securify2
https://github.com/smartdec/smartcheck

Trail of Bits | Formal Methods for Computer Security 2021 | 16.03.2021

Fully automated - Example

Trail of Bits | Formal Methods for Computer Security 2021 | 16.03.2021

Ernst & Young Nightfall

● github.com/EYBlockchain/nightfall/

● zk-SNARK-based platform to allow private asset transfer
on Ethereum

● Users deposit assets, and get a “withdrawal proof”,
allowing to withdraw the assets with another account

36

https://github.com/EYBlockchain/nightfall/

Trail of Bits | Formal Methods for Computer Security 2021 | 16.03.2021

Ernst & Young Nightfall

● transferFrom returns a boolean, indicating if the transfer
was a success

● Nightfall was not checking the returned value

● Create a withdrawal proof without transferring the asset
● Found by Slither [15]

37

Trail of Bits | Formal Methods for Computer Security 2021 | 16.03.2021

Semi-automated

Trail of Bits | Formal Methods for Computer Security 2021 | 16.03.2021

User-defined property

● User-defined property
○ DSL or Solidity’s assert

● Target business logic
○ State machine transition
○ Access controls
○ Arithmetic operations
○ External interactions

39

Trail of Bits | Formal Methods for Computer Security 2021 | 16.03.2021

Semi-Automated

● Fuzzers
○ Echidna [10]
○ ContractFuzzer [11]
○ Harvey (Closed source - SaaS (Mythx.io)

40

https://github.com/crytic/echidna
https://github.com/gongbell/ContractFuzzer
https://mythx.io/

Trail of Bits | Formal Methods for Computer Security 2021 | 16.03.2021

Semi-Automated

● Formal method based approach
○ Manticore [12] - Symbolic execution
○ K [13] - Symbolic execution
○ Verisol - Solidity to Boogie
○ Mythx - Symbolic execution (Closed source - SaaS (Mythx.io)
○ Certora - Abstract interpretation (Closed source)

41

https://github.com/trailofbits/manticore
https://kframework.org/
https://github.com/Microsoft/verisol
https://mythx.io/

Trail of Bits | Formal Methods for Computer Security 2021 | 16.03.2021

Semi-Automated

● Fuzzing versus formally-based methods
○ From experience, fuzzing is more effective to finds bugs
○ But formal methods lead to higher confidence

● Require expertise and deep understanding of the target

42

Trail of Bits | Formal Methods for Computer Security 2021 | 16.03.2021

Semi-Automated

43

Trail of Bits | Formal Methods for Computer Security 2021 | 16.03.2021

Semi-automated - Example

Trail of Bits | Formal Methods for Computer Security 2021 | 16.03.2021

Balancer

● https://balancer.finance

● Trading platform
○ Liquidity provider earn interests

■ Bookkeeping: the share of the pool’s liquidity, not of the assets sent

○ Complex arithmetics

45

https://balancer.finance

Trail of Bits | Formal Methods for Computer Security 2021 | 16.03.2021

● “How many assets I should send to receive
poolAmountOut liquidity share?”

Balancer

46

Trail of Bits | Formal Methods for Computer Security 2021 | 16.03.2021

Balancer

● Fixed-point arithmetic
● c = ((a * b) + BONE / 2) / BONE
● If ((a * b) + BONE / 2) < BONE, returns 0

47

Trail of Bits | Formal Methods for Computer Security 2021 | 16.03.2021

Balancer

● You could receive pool’s share for free for pool with low
liquidity

● Found with Echidna & Manticore

48

Trail of Bits | Formal Methods for Computer Security 2021 | 16.03.2021

Semi-automated - Limitations

Trail of Bits | Formal Methods for Computer Security 2021 | 16.03.2021

Property limitations

● Aave was “formally verified”

● Bug was found [16], allowed for property break

● Verification did not consider the code in its whole
architecture

50

Trail of Bits | Formal Methods for Computer Security 2021 | 16.03.2021

Program analysis in practice

Trail of Bits | Formal Methods for Computer Security 2021 | 16.03.2021

Industry usage

● Fully automated tool - Slither
○ All our audits

● Semi-automated tools - Echidna/Manticore
○ ~50% of the audits
○ Some clients write properties before our engagements

52

Trail of Bits | Formal Methods for Computer Security 2021 | 16.03.2021

Industry Usage

● Example: Yield Protocol
● Different levels of properties

● End-to-end
● Scenario-based
● Single component property

53

https://github.com/trailofbits/publications/blob/master/reviews/YieldProtocol.pdf

Trail of Bits | Formal Methods for Computer Security 2021 | 16.03.2021

Program analysis challenges

Trail of Bits | Formal Methods for Computer Security 2021 | 16.03.2021

Challenges - Engineering

● Not all tools have the same maturity
● Space evolving fast

● Solidity/EVM updates
● New application trends require new heuristics

● No property writing standard
● Solidity’s assert, but limited

55

Trail of Bits | Formal Methods for Computer Security 2021 | 16.03.2021

Challenges - Research

● Contract composability
● Small code, but high interactions

● Solidity/EVM specificity
● Array indexes are the results of hash functions
● Gas modeling

● Application specific modeling
● DeFi

● Combining techniques

56

Trail of Bits | Formal Methods for Computer Security 2021 | 16.03.2021

Conclusion

Trail of Bits | Formal Methods for Computer Security 2021 | 16.03.2021

Conclusion

58

● Blockchain: new technology
○ With challenges and research opportunities for program analysis

● Tools are already helping developers and auditors

● Crytic $10k Prize
○ Reward academic publications built on top of ToB tools (inc.

Slither/Echidna/Manticore)

https://blog.trailofbits.com/2019/11/13/announcing-the-crytic-10k-research-prize

Trail of Bits | Formal Methods for Computer Security 2021 | 16.03.2021

References
1. Bitcoin: A Peer-to-Peer Electronic Cash System - Satoshi Nakamoto

2. https://ethereum.github.io/yellowpaper/paper.pdf - G.Wood

3. SoK: Decentralized Finance (DeFi), Sam M. Werner and al. (preprint)

4. Dex Volume, Dex to Cex Spot trade volume (%) - dex-non-custodial

5. The 2021 Crypto Crime Report - Chainalysis

6. Slither: A Static Analysis Framework For Smart Contracts, Josselin Feist and al - WETSEB '19

7. Making Smart Contracts Smarter, Loi Luu and al - CCS16

8. Securify: Practical Security Analysis of Smart Contracts, Petar Tsankov and al - CCS18

9. SmartCheck: Static Analysis of Ethereum Smart Contracts, Sergei Tikhomirov and al - WETSEB18

10. Echidna: effective, usable, and fast fuzzing for smart contracts, Gustavo Grieco, Will Song, Artur Cygan, Josselin Feist, Alex Groce - ISSTA '20

11. ContractFuzzer: Fuzzing Smart Contracts for Vulnerability Detection, Bo Jiang - ASE18

12. Manticore: A User-Friendly Symbolic Execution Framework for Binaries and Smart Contracts, Mark Mossberg and al - WETSEB18

59

https://bitcoin.org/bitcoin.pdf
https://ethereum.github.io/yellowpaper/paper.pdf
https://arxiv.org/pdf/2101.08778.pdf
https://www.theblockcrypto.com/data/decentralized-finance/dex-non-custodial
https://arxiv.org/abs/1908.09878
https://github.com/trailofbits/publications/blob/master/papers/echidna_issta2020.pdf

Trail of Bits | Formal Methods for Computer Security 2021 | 16.03.2021

References
13. Kevm: A complete formal semantics of the ethereum virtual machine, Everett Hildenbrandt and al - CSF18

14. Formal Specification and Verification of Smart Contracts for Azure Blockchain, Yuepeng Wang and al

15. Bug Hunting with Crytic

16. Breaking Aave Upgradeability

60

https://blog.trailofbits.com/2020/05/15/bug-hunting-with-crytic/
https://blog.trailofbits.com/2020/12/16/breaking-aave-upgradeability/

