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Who Am I?

● Josselin Feist, josselin@trailofbits.com, @montyly

● Trail of Bits: trailofbits.com 
● We help organizations build safer software
● R&D focused: we use the latest program analysis techniques

● McSema https://github.com/lifting-bits/mcsema 

● Manticore https://github.com/trailofbits/manticore 

● Slither https://github.com/crytic/slither 

● Echidna https://github.com/crytic/echidna 
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Goals

● What is a Blockchain?

● What is a smart contract?

● What program analyses are applied in industry?

● Current challenges and research opportunities
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Blockchain
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Blockchain

● Ledger: Growing list of records
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Blockchain

● Distributed ledger: All participants store all the data

● Decentralized consensus: Everyone agrees on the data
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Blockchain Application

● Bitcoin[1] (2009): First digital currency using blockchain
○ Solved the double spend problem

● Ethereum[2] (2015): Extended blockchain to run apps
○ Store & execute code

Bitcoin: distributed database =>  Ethereum: distributed VM
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Decentralized Application
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Smart Contracts

● Smart Contracts: Applications that run on a blockchain
○ Everyone executes and verifies it
○ Decentralized: nobody can stop or secretly modify data
○ =>  Ensures strong properties on your application
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Smart Contract Usages

● Digital currency is one example of an application
○ ICOs, Crowdfunding system 
○ Game (ex: Poker, lotteries, ...)
○ Supply chain
○ …
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DeFi

● Decentralized Finance (DeFi)
○ Adapt financial primitives to a permissionless and trusted execution
○ Lending and trading protocols
○ Significant composability

12
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DeFi

● A lot of money is invested into smart contracts
○ ~$40-50B of value locked in major DeFi protocols [4]
○ Uniswap ~$36B in trading volume last month

■ ~5%-10% of crypto trades in decentralized exchanges
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Smart Contract Risks

● Smart contracts are programs = they have bugs

● Adversarial environment
○ Attacker can steal directly funds
○ Rely on cryptographic primitives to hide funds and launder money

● ~$200M stolen in 2020 through smart contract hacks  [5]
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Ethereum Internals
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EVM

● Ethereum runs EVM bytecode
○ VM with <150 opcodes
○ 1 register (PC)
○ Stack-based

● Calling a function = making a transaction
○ It has a cost: gas, paid in ethers

● Bytecode cannot be updated (!)
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Solidity

● Smart contracts are typically written in Solidity
○ High-level language in “Javascript style”
○ Contracts organized as a set of methods 
○ State = contract variables + balance (# ethers) 

17
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Solidity: Example
pragma solidity 0.8.0; // Compiler version
contract Bank{                    
    mapping(address => uint) private balances;

    constructor(uint initial_supply) public {
       balances[msg.sender] = initial_supply; 
    }
    function transfer(address to, uint val) public {
        balances[msg.sender] -= val;
        balances[to] += val;
    }
    function balanceOf(address user) public view returns (uint){
        return balances[user];
    }
}
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Example Vulnerabilities
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● The DAO (2016)

● Re-enter in the contract before the balance is set to zero
○ Repeat n times => withdraws n times the original deposit

● ~$70 millions stolen

Reentrancy

25

    if( ! (msg.sender.call.value(userBalance[msg.sender])() ) ){
        throw;
    }

    userBalance[msg.sender] = 0;

http://hackingdistributed.com/2016/06/18/analysis-of-the-dao-exploit/
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Improperly restricted functions

● Parity Wallet (2017)
○ Widely used library for storing ethers

● Key function was callable by anyone
○ Someone destructed the contract
○ Broke all third-party integrations

● $300 million of frozen assets

26

https://www.parity.io/security-alert-2/
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Oracle manipulation

● Harvest Finance: DeFi yield aggregator (2020)
○ Users deposit assets, and Harvest invest funds into various protocols
○ Bug: incorrect usage of a price Oracle

■ Generate fake price, such that deposit to share ratio is increased

■ Deposit with fake ratio to get more share than expected

■ Replace with original price 

■ Withdraw the share and received more than initial deposit

● ~$30M stolen

27
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Program analysis
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Program Analysis

● Smart contracts are small
○ <1,000 LoC

● Gas cost lead to bounded execution

● High value = require high confidence
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Program Analysis

● Fully automated
○ Detect common patterns
○ Static analysis / symbolic execution

● Semi-automated
○ Property-based approach
○ Fuzzing / symbolic execution / abstract interpretation / ...  

● A lot of tools - not all maintained 
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Fully automated



Trail of Bits   |   Formal Methods for Computer Security 2021  |  16.03.2021

Fully automated

● Static analysis 
○ Slither [6]

■ ~100 detectors (~70 public)
■ +40 trophies

○ Maru
■ Closed source - SaaS (Mythx.io)

■ 28 detectors

32

https://github.com/crytic/slither
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Fully automated - Slither

● Common flaws
○ Reentrancy, unprotected function, ...

● Many language-level issues
○ Variable shadowing, missing return statements, ...

33
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Fully automated

● Symbolic execution
○ Oyente [7] (< 10 detectors)

● Unmainted tools
○ Securify [8] 
○ SmartCheck [9] 
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https://github.com/enzymefinance/oyente
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Fully automated - Example
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Ernst & Young Nightfall

● github.com/EYBlockchain/nightfall/ 

● zk-SNARK-based platform to allow private asset transfer 
on Ethereum

● Users deposit assets, and get a “withdrawal proof”, 
allowing to withdraw the assets with another account

36
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Ernst & Young Nightfall

● transferFrom returns a boolean, indicating if the transfer 
was a success

● Nightfall was not checking the returned value

● Create a withdrawal proof without transferring the asset 
● Found by Slither [15]
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Semi-automated
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User-defined property

● User-defined property
○ DSL or Solidity’s assert

● Target business logic
○ State machine transition
○ Access controls
○ Arithmetic operations
○ External interactions
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Semi-Automated

● Fuzzers
○ Echidna [10]
○ ContractFuzzer [11]
○ Harvey (Closed source - SaaS (Mythx.io)
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https://github.com/crytic/echidna
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https://mythx.io/


Trail of Bits   |   Formal Methods for Computer Security 2021  |  16.03.2021

Semi-Automated

● Formal method based approach
○ Manticore [12] - Symbolic execution
○ K [13] - Symbolic execution
○ Verisol - Solidity to Boogie
○ Mythx - Symbolic execution (Closed source - SaaS (Mythx.io)
○ Certora - Abstract interpretation (Closed source)
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Semi-Automated

● Fuzzing versus formally-based methods
○ From experience, fuzzing is more effective to finds bugs
○ But formal methods lead to higher confidence

● Require expertise and deep understanding of the target
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Semi-Automated

43
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Semi-automated - Example



Trail of Bits   |   Formal Methods for Computer Security 2021  |  16.03.2021

Balancer

● https://balancer.finance 

● Trading platform
○ Liquidity provider earn interests

■ Bookkeeping: the share of the pool’s liquidity, not of the assets sent

○ Complex arithmetics

45
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● “How many assets I should send to receive 
poolAmountOut liquidity share?”

Balancer

46
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Balancer

● Fixed-point arithmetic
● c = ((a * b) + BONE / 2 ) / BONE
● If ((a * b) + BONE / 2 ) < BONE, returns 0
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Balancer

● You could receive pool’s share for free for pool with low 
liquidity

● Found with Echidna & Manticore
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Semi-automated - Limitations
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Property limitations

● Aave was “formally verified”

● Bug was found [16], allowed for property break

● Verification did not consider the code in its whole 
architecture

50
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Program analysis in practice
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Industry usage

● Fully automated tool  - Slither
○ All our audits

● Semi-automated tools - Echidna/Manticore
○ ~50% of the audits
○ Some clients write properties before our engagements
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Industry Usage

● Example: Yield Protocol
● Different levels of properties

● End-to-end
● Scenario-based
● Single component property

53
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Program analysis challenges
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Challenges  - Engineering

● Not all tools have the same maturity
● Space evolving fast

● Solidity/EVM updates
● New application trends require new heuristics

● No property writing standard
● Solidity’s assert, but limited
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Challenges - Research

● Contract composability
● Small code, but high interactions

● Solidity/EVM specificity
● Array indexes are the results of hash functions
● Gas modeling

● Application specific modeling
● DeFi

● Combining techniques

56
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Conclusion
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Conclusion
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● Blockchain: new technology
○ With challenges and research opportunities for program analysis

● Tools are already helping developers and auditors

● Crytic $10k Prize
○ Reward academic publications built on top of ToB tools (inc. 

Slither/Echidna/Manticore)

https://blog.trailofbits.com/2019/11/13/announcing-the-crytic-10k-research-prize
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