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Who Am I?
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e Josselin Feist, josselin@trailofbits.com, @montyly

e Trail of Bits: trailofbits.com

e \We help organizations build safer software

e R&D focused: we use the latest program analysis techniques

McSema https://github.com/lifting-bits/mcsema

Manticore https://github.com/trailofbits/manticore
Slither https://github.com/crytic/slither
Echidna https://github.com/crytic/echidna
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Goals BT
e What is a Blockchain?
e Whatis a smart contract?

e What program analyses are applied in industry?

e Current challenges and research opportunities



Blockchain



Blockchain

e Ledger: Growing list of records

Alice + 100;

Alice - 50: Bob + 50:
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Blockchain Blte

e Distributed ledger: All participants store all the data

e Decentralized consensus: Everyone agrees on the data




' mat TRAL
Blockchain Application s

e Bitcoin[1] (2009): First digital currency using blockchain

o Solved the double spend problem

e Ethereum[2] (2015): Extended blockchain to run apps

o Store & execute code

Bitcoin: distributed database => Ethereum: distributed VM



Decentralized Applicat

ion

RA

s

Bob ran foo(0); it returned 42.@

-
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Decentralized Application

Bob ran foo(0); it returned 42 Bob ran foo(0); it returned 42

~_/

Bob ran foo(0);
it returned 42

Bob ran foo(0); it returned 42

Bob ran foo(0);
it returned 42

—>
Bob ran foo(0);
it returned 42

/ Bob ran foo(0); it returned 42
Bob ran foo(0); it returned 42 /
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Smart Contracts Wi

e Smart Contracts: Applications that run on a blockchain

o Everyone executes and verifies it
o Decentralized: nobody can stop or secretly modify data
o => Ensures strong properties on your application
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Smart Contract Usages

e Digital currency is one example of an application

o |COs, Crowdfunding system
o Game (ex: Poker, lotteries, ...)
o Supply chain

©)
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DeFi

e Decentralized Finance (DeFi)

o Adapt financial primitives to a permissionless and trusted execution

©)

©)

Lending and trading protocols
Significant composability
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DeFi "t

e A lot of money is invested into smart contracts

o ~%$40-50B of value locked in major DeFi protocols [4]
o Uniswap ~$368B in trading volume last month

m  ~5%-10% of crypto trades in decentralized exchanges
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Smart Contract Risks ke

e Smart contracts are programs = they have bugs

e Adversarial environment

o Attacker can steal directly funds
o Rely on cryptographic primitives to hide funds and launder money

e ~$200M stolen in 2020 through smart contract hacks [5]



Ethereum Internals
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EVM "B

000OEO PUSH1 0x60

e Ethereum runs EVM bytecode 00000002 PUSHL ©x40
00000004 MSTORE

o VM with <150 opcodes TN LI
PEOOOOOE ISZERO

o register (PC) P0eEEOO7 PUSH2 0x131

0000000a JUMPI

o Stack-based
e C(Calling a function = making a transaction
o It has a cost: gas, paid in ethers

e Bytecode cannot be updated (!)
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Solidity 2

e Smart contracts are typically written in Solidity

o High-level language in “Javascript style”
o Contracts organized as a set of methods
o State = contract variables + balance (# ethers)



Solidity: Example

TRAL
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pragma solidity ©.8.0; // Compiler version
contract Bank{
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Solidity: Example
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mapping(address => uint) private balances;
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Solidity: Example
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constructor(uint initial supply) public {
balances[msg.sender| = initial supply;

}
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Solidity: Example
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function transfer(address to, uint val) public {
balances|[msg.sender]| -= val;
balances|[to]| += val;
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Solidity: Example
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function balanceOf(address user) public view returns (uint){
return balances|user];

}
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Solidity: Example Bt

pragma solidity 0.8.0;
contract Bank{

mapping(address => uint) private balances; < State variable
constructor(uint initial supply) public {
balances|[msg.sender]| = initial supply; < Constructor
}
function transfer(address to, uint val) public { ¢ ' Public function
balances|[msg.sender]| -= val;
balances[to]| += val;
}
function balanceOf(address user) public view returns (uint){ Constant functi
return balances[user]; < | on(s 22 fr:relg; lon
} g
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Example Vulnerabilities
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Reentrancy BYS

e The DAO (2016)

if( ! (msg.sender.call.value(userBalance[msg.sender])() ) ){
throw;

}

userBalance[msg.sender]| = 9;

e Re-enter in the contract before the balance is set to zero

o Repeat ntimes => withdraws n times the original deposit

e ~%$70 millions stolen
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http://hackingdistributed.com/2016/06/18/analysis-of-the-dao-exploit/

Improperly restricted functions

e Parity Wallet (2017)

o Widely used library for storing ethers
e Key function was callable by anyone

o Someone destructed the contract
o Broke all third-party integrations

e $300 million of frozen assets

TRAL

B'7S
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https://www.parity.io/security-alert-2/

TRAL

Oracle manipulation Bt

e Harvest Finance: DeFi yield aggregator (2020)

o Users deposit assets, and Harvest invest funds into various protocols
o Bug: incorrect usage of a price Oracle

m Generate fake price, such that deposit to share ratio is increased

m Deposit with fake ratio to get more share than expected

m Replace with original price

m Withdraw the share and received more than initial deposit

e ~$30M stolen


https://harvest.finance/

Program analysis
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Program Analysis Bt

e Smart contracts are small
o <1,000 LoC
e Gas cost lead to bounded execution

e High value = require high confidence
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Program Analysis Bts

e Fully automated

o Detect common patterns
o Static analysis / symbolic execution

e Semi-automated

o Property-based approach
o Fuzzing / symbolic execution / abstract interpretation / ...

e A lot of tools - not all maintained

3o



Fully automated



Fully automated

e Static analysis
o Slither [6]
m ~100 detectors (~70 public)

m +40 trophies
o Maru

m Closed source - SaaS (Mythx.io)
m 28 detectors

TRAL

B'7S
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https://github.com/crytic/slither
https://github.com/crytic/slither/blob/master/trophies.md
https://mythx.io/

Fully automated - Slither

e Common flaws

o Reentrancy, unprotected function, ...

e Many language-level issues

o Variable shadowing, missing return statements, ...

Slither core
Vulnerability Detection

D Optimization Detection
s £ Lson Information SlithIR ,| Code P
@ | o QQ AST 71 recovery ~| conversion “| analysis
Printers
smart Solidity
contract compiler

Third-Party Tools
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Fully automated

e Symbolic execution
o Ovente [/] (<10 detectors)

e Unmainted tools

o Securify [8]
o SmartCheck [9]

TRAL
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https://github.com/enzymefinance/oyente
http://github.com/eth-sri/securify2
https://github.com/smartdec/smartcheck

Fully automated - Example

TRAL
B'TS



Ernst & Young Nightfall "l
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e github.com/EYBlockchain/nightfall/

e zk-SNARK-based platform to allow private asset transfer
on Ethereum

e Users deposit assets, and get a “withdrawal proof”,
allowing to withdraw the assets with another account


https://github.com/EYBlockchain/nightfall/

Ernst & Young Nightfall "

e transferFrom returns a boolean, indicating if the transfer
was a success

function transferFrom(address, address, uint256) public returns (bool)

e Nightfall was not checking the returned value

// Finally, transfer the fTokens from the sender to this contract

fToken.transferFrom(msg.sender, address(this), value);

e Create a withdrawal proof without transferring the asset
e Found by Slither [15]



Semi-automated
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User-defined property

e User-defined property

©)

DSL or Solidity's assert

e Target business logic

O

O

©)

State machine transition
Access controls
Arithmetic operations
External interactions
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Semi-Automated
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e Fuzzers

o Echidna [10]
o ContractFuzzer [11]

o Harvey (Closed source - SaasS (Mythx.io)

40


https://github.com/crytic/echidna
https://github.com/gongbell/ContractFuzzer
https://mythx.io/

TRAL

Semi-Automated e

e Formal method based approach

o Manticore [12] - Symbolic execution

o K[13]-Symbolic execution

o Verisol - Solidity to Boogie

o Mythx - Symbolic execution (Closed source - SaaS (Mythx.io)
o Certora - Abstract interpretation (Closed source)


https://github.com/trailofbits/manticore
https://kframework.org/
https://github.com/Microsoft/verisol
https://mythx.io/
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Semi-Automated BT

e Fuzzing versus formally-based methods

o From experience, fuzzing is more effective to finds bugs
o But formal methods lead to higher confidence

e Require expertise and deep understanding of the target

42
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A Grigore Rosu

@RosuGrigore

1/2 "Formal verification” is now a buzzword in the
blockchain, but it will not be done properly unless
people understand that it takes *significantly* more

work to formally verify a program than to write the
program first place. Think 9x more for smart contracts!

9:56 PM - May 31, 2019 - Twitter Web Client
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Semi-automated - Example
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Balancer
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e https://balancer.finance

e Trading platform

o Liquidity provider earn interests
m Bookkeeping: the share of the pool's liquidity, not of the assets sent

o Complex arithmetics

45


https://balancer.finance

Balancer

e “How many assets | should send to receive
poolAmountOut liquidity share?”

function joinPool(uint poolAmountOut, uint[] calldata maxAmountsIn)
external
_logs_
_lock_

require(_finalized, "ERR_NOT_FINALIZED");

uint poolTotal = totalSupply();
uint ratio = bdiv(poolAmountOut, poolTotal);
require(ratio != @, "ERR_MATH_APPROX");

for (uint i = @; i < _tokens.length; i++) {
address t = _tokens[i];
uint bal = _records[t].balance;
uint tokenAmountIn = bmul(ratio, bal);

s

curity 2021 | 16.03.2021



Balancer

e Fixed-point arithmetic
e C=(@a*b)+BONE/2)/BONE
e If((a*b)+BONE/2)<BONE, returns 0

function bmul(uint a, uint b)
internal pure
returns (uint)

uint c@ = a * b;

require(a == @ || ¢@ / a == b, "ERR_MUL_OVERFLOW");
uint c1 = c@ + (BONE / 2);

require(cl >= c@, "ERR_MUL_OVERFLOW");

uint c2 = cl1 / BONE;

return c2;

uter Security 2021 | 16.03.2021
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e You could receive pool's share for free for pool with low

liquidity
e Found with Echidna & Manticore
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Semi-automated - Limitations
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Property limitations Bhts

e Aave was “formally verified”

35.Integrity of deposit v*
When actor u deposits x tokens of asset t on behalf of actor b (can be a)
The asset balance of u is decreased and the aToken of b is increased.
{ t_ = t.balanceOf(u) A a_ = getAToken(t).balanceOf(b) }
deposit(u, t, x, b );
{ t.balanceOf(u) = t_ - x A getAToken(t).balanceOf(b) = a_ + x }

e Bug was found [16], allowed for property break

e Verification did not consider the code in its whole
architecture

Formal Methods for Computer Security 20 6.03.20 a0



Program analysis in practice
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Industry usage Blts

e Fully automated tool - Slither
o All our audits
e Semi-automated tools - Echidna/Manticore

o ~50% of the audits
o Some clients write properties before our engagements

a2



Industry Usage Bts

Ceneral properties

# Property Result

1 | Calling erase in the Controller never reverts. PASSED

e Example: Yield Protocol et e

e Different levels of properties
e End-to-end
e Scenario-based

PY S | n g| e C O m p O n e nt p rO p e rty 3 | Calling powerof in the Controller never reverts, PASSED

4 | Calling totalDebtDai in the Controller never reverts. PASSED

5 | Posting, borrowing, repaying, and withdrawing using CHAI as PASSED
collateral properly updates the state variables.

6 | Posting, borrowing, repaying, and withdrawing using WETH as PASSED
collateral properly updates the state variables.

7 | All the WETH balances are above dust or zero in the FAILED (TOB-YP-006)
Controller.

8 | All the WETH balances are above dust or zero in the PASSED
Liquidations.

9 [ Calling price never reverts on Liquidations PASSED

10 | Transferring tokens to the null address (0x0) causes a revert. PASSED

11 | The null address (0x@) owns no tokens. PASSED

12 | Transferring a valid amount of tokens to a non-null address PASSED

reduces the current balance.

13 | Transferring an invalid amount of tokens to a non-null PASSED
address reverts or returns false.



https://github.com/trailofbits/publications/blob/master/reviews/YieldProtocol.pdf

Program analysis challenges
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Challenges - Engineering s

e Not all tools have the same maturity

e Space evolving fast
e Solidity/EVM updates
e New application trends require new heuristics

e No property writing standard
e Solidity's assert, but limited

HH]
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Challenges - Research Bt

e Contract composability
e Small code, but high interactions

e Solidity/EVM specificity
e Array indexes are the results of hash functions
e (as modeling

e Application specific modeling
o DeFi

e Combining techniques

a6



Conclusion



TRA)L

Conclusion Blte

e Blockchain: new technology

o With challenges and research opportunities for program analysis

e Tools are already helping developers and auditors

e Crytic $10k Prize

o Reward academic publications built on top of ToB tools (inc.
Slither/Echidna/Manticore)



https://blog.trailofbits.com/2019/11/13/announcing-the-crytic-10k-research-prize
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