TQ < 2 Testing and Verifying Smart

Y A L Contracts: From Theory to Practice
B7S
9 IJd

Formal Methods for Computer Security 2021

Who Am I?

RA

s

e Josselin Feist, josselin@trailofbits.com, @montyly

e Trail of Bits: trailofbits.com

e \We help organizations build safer software

e R&D focused: we use the latest program analysis techniques

McSema https://github.com/lifting-bits/mcsema

Manticore https://github.com/trailofbits/manticore
Slither https://github.com/crytic/slither
Echidna https://github.com/crytic/echidna

ail of Bits Formal Methods for Computer Security 2021 | 16.03.2021

mailto:josselin@trailofbits.com
https://twitter.com/montyly
https://www.trailofbits.com/
https://github.com/lifting-bits/mcsema
https://github.com/trailofbits/manticore
https://github.com/crytic/slither
https://github.com/crytic/echidna

TRA)L

Goals BT
e What is a Blockchain?
e Whatis a smart contract?

e What program analyses are applied in industry?

e Current challenges and research opportunities

Blockchain

Blockchain

e Ledger: Growing list of records

Alice + 100;

Alice - 50: Bob + 50:

TRA)L

B
[

e

TRA)L

Blockchain Blte

e Distributed ledger: All participants store all the data

e Decentralized consensus: Everyone agrees on the data

' mat TRAL
Blockchain Application s

e Bitcoin[1] (2009): First digital currency using blockchain

o Solved the double spend problem

e Ethereum[2] (2015): Extended blockchain to run apps

o Store & execute code

Bitcoin: distributed database => Ethereum: distributed VM

Decentralized Applicat

ion

RA

s

Bob ran foo(0); it returned 42.@

-

Trail of Bits | Formal Methods for Computer Security 2021 | 16.03.2021

Decentralized Application

Bob ran foo(0); it returned 42 Bob ran foo(0); it returned 42

~_/

Bob ran foo(0);
it returned 42

Bob ran foo(0); it returned 42

Bob ran foo(0);
it returned 42

—>
Bob ran foo(0);
it returned 42

/ Bob ran foo(0); it returned 42
Bob ran foo(0); it returned 42 /

TRA)L
Smart Contracts Wi

e Smart Contracts: Applications that run on a blockchain

o Everyone executes and verifies it
o Decentralized: nobody can stop or secretly modify data
o => Ensures strong properties on your application

10

Smart Contract Usages

e Digital currency is one example of an application

o |COs, Crowdfunding system
o Game (ex: Poker, lotteries, ...)
o Supply chain

©)

TRA)L

B
[

7S

DeFi

e Decentralized Finance (DeFi)

o Adapt financial primitives to a permissionless and trusted execution

©)

©)

Lending and trading protocols
Significant composability

DDDDDDDDDDD

Ledger
A /—%

5 v

Collataral Sm:(/(?)on(racls T%(s)

gg -~ A
YYYYYYYYYYYY G’.

“% - B (@)

=\ | arketMechanism Oracle Governance
Arbitrage (@ -

Y I
aianions | \{%/ o \{'%/) ,Qf,%/

oooooooo

oooooooooooooooo

uuuuuuuuuuuuu

Asset Loanable Funds
nnnnnnnn

sssssssssssssssssss

12

DeFi "t

e A lot of money is invested into smart contracts

o ~%$40-50B of value locked in major DeFi protocols [4]
o Uniswap ~$368B in trading volume last month

m ~5%-10% of crypto trades in decentralized exchanges

TRA)L

Smart Contract Risks ke

e Smart contracts are programs = they have bugs

e Adversarial environment

o Attacker can steal directly funds
o Rely on cryptographic primitives to hide funds and launder money

e ~$200M stolen in 2020 through smart contract hacks [5]

Ethereum Internals

TRAL
B'TS

EVM "B

000OEO PUSH1 0x60

e Ethereum runs EVM bytecode 00000002 PUSHL ©x40
00000004 MSTORE

o VM with <150 opcodes TN LI
PEOOOOOE ISZERO

o register (PC) P0eEEOO7 PUSH2 0x131

0000000a JUMPI

o Stack-based
e C(Calling a function = making a transaction
o It has a cost: gas, paid in ethers

e Bytecode cannot be updated (!)

TRA)L

Solidity 2

e Smart contracts are typically written in Solidity

o High-level language in “Javascript style”
o Contracts organized as a set of methods
o State = contract variables + balance (# ethers)

Solidity: Example

TRAL

B'7S

pragma solidity ©.8.0; // Compiler version
contract Bank{

18

Solidity: Example

TRAL

B'7S

mapping(address => uint) private balances;

19

Solidity: Example

TRAL

B
[

s

constructor(uint initial supply) public {
balances[msg.sender| = initial supply;

}

20

Solidity: Example

TRAL

B
[

s

function transfer(address to, uint val) public {
balances|[msg.sender]| -= val;
balances|[to]| += val;

21

Solidity: Example

TRAL

B
[

s

function balanceOf(address user) public view returns (uint){
return balances|user];

}

22

TRAL

Solidity: Example Bt

pragma solidity 0.8.0;
contract Bank{

mapping(address => uint) private balances; < State variable
constructor(uint initial supply) public {
balances|[msg.sender]| = initial supply; < Constructor
}
function transfer(address to, uint val) public { ¢ ' Public function
balances|[msg.sender]| -= val;
balances[to]| += val;
}
function balanceOf(address user) public view returns (uint){ Constant functi
return balances[user]; < | on(s 22 fr:relg; lon
} g

23

Example Vulnerabilities

TRAL
B'TS

TRA)L

Reentrancy BYS

e The DAO (2016)

if(! (msg.sender.call.value(userBalance[msg.sender])())){
throw;

}

userBalance[msg.sender]| = 9;

e Re-enter in the contract before the balance is set to zero

o Repeat ntimes => withdraws n times the original deposit

e ~%$70 millions stolen

25

http://hackingdistributed.com/2016/06/18/analysis-of-the-dao-exploit/

Improperly restricted functions

e Parity Wallet (2017)

o Widely used library for storing ethers
e Key function was callable by anyone

o Someone destructed the contract
o Broke all third-party integrations

e $300 million of frozen assets

TRAL

B'7S

26

https://www.parity.io/security-alert-2/

TRAL

Oracle manipulation Bt

e Harvest Finance: DeFi yield aggregator (2020)

o Users deposit assets, and Harvest invest funds into various protocols
o Bug: incorrect usage of a price Oracle

m Generate fake price, such that deposit to share ratio is increased

m Deposit with fake ratio to get more share than expected

m Replace with original price

m Withdraw the share and received more than initial deposit

e ~$30M stolen

https://harvest.finance/

Program analysis

TRAL
B'TS

TRA)L

Program Analysis Bt

e Smart contracts are small
o <1,000 LoC
e Gas cost lead to bounded execution

e High value = require high confidence

29

TRA)L

Program Analysis Bts

e Fully automated

o Detect common patterns
o Static analysis / symbolic execution

e Semi-automated

o Property-based approach
o Fuzzing / symbolic execution / abstract interpretation / ...

e A lot of tools - not all maintained

3o

Fully automated

Fully automated

e Static analysis
o Slither [6]
m ~100 detectors (~70 public)

m +40 trophies
o Maru

m Closed source - SaaS (Mythx.io)
m 28 detectors

TRAL

B'7S

32

https://github.com/crytic/slither
https://github.com/crytic/slither/blob/master/trophies.md
https://mythx.io/

Fully automated - Slither

e Common flaws

o Reentrancy, unprotected function, ...

e Many language-level issues

o Variable shadowing, missing return statements, ...

Slither core
Vulnerability Detection

D Optimization Detection
s £ Lson Information SlithIR ,| Code P
@ | o QQ AST 71 recovery ~| conversion “| analysis
Printers
smart Solidity
contract compiler

Third-Party Tools

33

Fully automated

e Symbolic execution
o Ovente [/] (<10 detectors)

e Unmainted tools

o Securify [8]
o SmartCheck [9]

TRAL

B'7S

34

https://github.com/enzymefinance/oyente
http://github.com/eth-sri/securify2
https://github.com/smartdec/smartcheck

Fully automated - Example

TRAL
B'TS

Ernst & Young Nightfall "l

IS)

e github.com/EYBlockchain/nightfall/

e zk-SNARK-based platform to allow private asset transfer
on Ethereum

e Users deposit assets, and get a “withdrawal proof”,
allowing to withdraw the assets with another account

https://github.com/EYBlockchain/nightfall/

Ernst & Young Nightfall "

e transferFrom returns a boolean, indicating if the transfer
was a success

function transferFrom(address, address, uint256) public returns (bool)

e Nightfall was not checking the returned value

// Finally, transfer the fTokens from the sender to this contract

fToken.transferFrom(msg.sender, address(this), value);

e Create a withdrawal proof without transferring the asset
e Found by Slither [15]

Semi-automated

TRAL
B'TS

User-defined property

e User-defined property

©)

DSL or Solidity's assert

e Target business logic

O

O

©)

State machine transition
Access controls
Arithmetic operations
External interactions

TRA)L

B
[

7S

39

Semi-Automated

TRAL

B'7S

e Fuzzers

o Echidna [10]
o ContractFuzzer [11]

o Harvey (Closed source - SaasS (Mythx.io)

40

https://github.com/crytic/echidna
https://github.com/gongbell/ContractFuzzer
https://mythx.io/

TRAL

Semi-Automated e

e Formal method based approach

o Manticore [12] - Symbolic execution

o K[13]-Symbolic execution

o Verisol - Solidity to Boogie

o Mythx - Symbolic execution (Closed source - SaaS (Mythx.io)
o Certora - Abstract interpretation (Closed source)

https://github.com/trailofbits/manticore
https://kframework.org/
https://github.com/Microsoft/verisol
https://mythx.io/

TRA)L

Semi-Automated BT

e Fuzzing versus formally-based methods

o From experience, fuzzing is more effective to finds bugs
o But formal methods lead to higher confidence

e Require expertise and deep understanding of the target

42

. TR
Semi-Automated e

A Grigore Rosu

@RosuGrigore

1/2 "Formal verification” is now a buzzword in the
blockchain, but it will not be done properly unless
people understand that it takes *significantly* more

work to formally verify a program than to write the
program first place. Think 9x more for smart contracts!

9:56 PM - May 31, 2019 - Twitter Web Client

Trail of Bits Formal Methods for Computer Security 2021 | 16.03.2021 43

Semi-automated - Example

TRAL
B'TS

Balancer

TRAL

B
[

s

e https://balancer.finance

e Trading platform

o Liquidity provider earn interests
m Bookkeeping: the share of the pool's liquidity, not of the assets sent

o Complex arithmetics

45

https://balancer.finance

Balancer

e “How many assets | should send to receive
poolAmountOut liquidity share?”

function joinPool(uint poolAmountOut, uint[] calldata maxAmountsIn)
external
logs
lock

require(_finalized, "ERR_NOT_FINALIZED");

uint poolTotal = totalSupply();
uint ratio = bdiv(poolAmountOut, poolTotal);
require(ratio != @, "ERR_MATH_APPROX");

for (uint i = @; i < _tokens.length; i++) {
address t = _tokens[i];
uint bal = _records[t].balance;
uint tokenAmountIn = bmul(ratio, bal);

s

curity 2021 | 16.03.2021

Balancer

e Fixed-point arithmetic
e C=(@a*b)+BONE/2)/BONE
e If((a*b)+BONE/2)<BONE, returns 0

function bmul(uint a, uint b)
internal pure
returns (uint)

uint c@ = a * b;

require(a == @ || ¢@ / a == b, "ERR_MUL_OVERFLOW");
uint c1 = c@ + (BONE / 2);

require(cl >= c@, "ERR_MUL_OVERFLOW");

uint c2 = cl1 / BONE;

return c2;

uter Security 2021 | 16.03.2021

47

TRA)L
Balancer Blts

e You could receive pool's share for free for pool with low

liquidity
e Found with Echidna & Manticore

48

Semi-automated - Limitations

TRAL
B'TS

TRA)L

Property limitations Bhts

e Aave was “formally verified”

35.Integrity of deposit v*
When actor u deposits x tokens of asset t on behalf of actor b (can be a)
The asset balance of u is decreased and the aToken of b is increased.
{ t_ = t.balanceOf(u) A a_ = getAToken(t).balanceOf(b) }
deposit(u, t, x, b);
{ t.balanceOf(u) = t_ - x A getAToken(t).balanceOf(b) = a_ + x }

e Bug was found [16], allowed for property break

e Verification did not consider the code in its whole
architecture

Formal Methods for Computer Security 20 6.03.20 a0

Program analysis in practice

TRAL
B'TS

TRA)L

Industry usage Blts

e Fully automated tool - Slither
o All our audits
e Semi-automated tools - Echidna/Manticore

o ~50% of the audits
o Some clients write properties before our engagements

a2

Industry Usage Bts

Ceneral properties

Property Result

1 | Calling erase in the Controller never reverts. PASSED

e Example: Yield Protocol et e

e Different levels of properties
e End-to-end
e Scenario-based

PY S | n g| e C O m p O n e nt p rO p e rty 3 | Calling powerof in the Controller never reverts, PASSED

4 | Calling totalDebtDai in the Controller never reverts. PASSED

5 | Posting, borrowing, repaying, and withdrawing using CHAI as PASSED
collateral properly updates the state variables.

6 | Posting, borrowing, repaying, and withdrawing using WETH as PASSED
collateral properly updates the state variables.

7 | All the WETH balances are above dust or zero in the FAILED (TOB-YP-006)
Controller.

8 | All the WETH balances are above dust or zero in the PASSED
Liquidations.

9 [Calling price never reverts on Liquidations PASSED

10 | Transferring tokens to the null address (0x0) causes a revert. PASSED

11 | The null address (0x@) owns no tokens. PASSED

12 | Transferring a valid amount of tokens to a non-null address PASSED

reduces the current balance.

13 | Transferring an invalid amount of tokens to a non-null PASSED
address reverts or returns false.

https://github.com/trailofbits/publications/blob/master/reviews/YieldProtocol.pdf

Program analysis challenges

TRAL
B'TS

TRA)L

Challenges - Engineering s

e Not all tools have the same maturity

e Space evolving fast
e Solidity/EVM updates
e New application trends require new heuristics

e No property writing standard
e Solidity's assert, but limited

HH]

TRA)L

Challenges - Research Bt

e Contract composability
e Small code, but high interactions

e Solidity/EVM specificity
e Array indexes are the results of hash functions
e (as modeling

e Application specific modeling
o DeFi

e Combining techniques

a6

Conclusion

TRA)L

Conclusion Blte

e Blockchain: new technology

o With challenges and research opportunities for program analysis

e Tools are already helping developers and auditors

e Crytic $10k Prize

o Reward academic publications built on top of ToB tools (inc.
Slither/Echidna/Manticore)

https://blog.trailofbits.com/2019/11/13/announcing-the-crytic-10k-research-prize

References B

1. Bitcoin: A Peer-to-Peer Electronic Cash System - Satoshi Nakamoto

2. https://ethereum.github.io/yellowpaper/paper.pdf - G.Wood

3. SoK: Decentralized Finance (DeFi), Sam M. Werner and al. (preprint)

4, Dex Volume, Dex to Cex Spot trade volume (%) - dex-non-custodial
5. The 2021 Crypto Crime Report - Chainalysis

6. Slither: A Static Analysis Framework For Smart Contracts, Josselin Feist and al - WETSEB '19

7. Making Smart Contracts Smarter, Loi Luu and al - CCS16

8. Securify: Practical Security Analysis of Smart Contracts, Petar Tsankov and al - CCS18

o. SmartCheck: Static Analysis of Ethereum Smart Contracts, Sergei Tikhomirov and al - WETSEB18
10. Echidna: effective, usable, and fast fuzzing for smart contracts, Gustavo Grieco, Will Song, Artur Cygan, Josselin Feist, Alex Groce - ISSTA '20
11. ContractFuzzer: Fuzzing Smart Contracts for Vulnerability Detection, Bo Jiang - ASE18

12. Manticore: A User-Friendly Symbolic Execution Framework for Binaries and Smart Contracts, Mark Mossberg and al - WETSEB18

Trail of Bits Formal Methods for Computer Security 2021 | 16.03.2021

L]

https://bitcoin.org/bitcoin.pdf
https://ethereum.github.io/yellowpaper/paper.pdf
https://arxiv.org/pdf/2101.08778.pdf
https://www.theblockcrypto.com/data/decentralized-finance/dex-non-custodial
https://arxiv.org/abs/1908.09878
https://github.com/trailofbits/publications/blob/master/papers/echidna_issta2020.pdf

References

13. Kevm: A complete formal semantics of the ethereum virtual machine, Everett Hildenbrandt and al - CSF18
14. Formal Specification and Verification of Smart Contracts for Azure Blockchain, Yuepeng Wang and al

15. Bug Hunting with Crytic

16. Breaking Aave Upgradeability

Formal Methods for Computer Sec

https://blog.trailofbits.com/2020/05/15/bug-hunting-with-crytic/
https://blog.trailofbits.com/2020/12/16/breaking-aave-upgradeability/

