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Roadmap

First half: introduction

Second half: list of results

2/22



Formal methods for security

I Prove formally security properties (break the circle attacks ↔
security patches)

I Find attacks

I In this presentation: mostly applications to security
protocols/security API. But the scope is larger.
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What is specific to this area of research ?

Statement of the question

P
?

|= φ

P is the model: a formal concurrent process, a
distributed program, an API, a circuit,...

φ is a security property: confidentiality, agreement,
integrity, indistinguishability, ...

what is the satisfaction relation ?
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The satisfaction relation

For “any” attacker A,

P ‖ A never violates φ

A is the main difference with model checking

Indistinguishability properties

P1
?∼ P2

“An attacker A interacting with either P1 or P2 cannot guess with
which of the two it interacted.
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What is an attacker ?

I We cannot just consider any A

I We need to define formally the class of attackers that we
consider:
How A interacts with P, what are the computation
capabilities of A

Examples of attackers classes

I The “Dolev-Yao” model (for protocols), with many variations

I The interactive polynomial time Turing machines (with many
variations)

I A quantum attacker

I Possible side channel information leaks

A security property may be satisfied for some attakers and not for
others: this is a problem for the promotion of formal methods

6/22



What is an attacker ?

I We cannot just consider any A
I We need to define formally the class of attackers that we

consider:
How A interacts with P, what are the computation
capabilities of A

Examples of attackers classes

I The “Dolev-Yao” model (for protocols), with many variations

I The interactive polynomial time Turing machines (with many
variations)

I A quantum attacker

I Possible side channel information leaks

A security property may be satisfied for some attakers and not for
others: this is a problem for the promotion of formal methods

6/22



What is an attacker ?

I We cannot just consider any A
I We need to define formally the class of attackers that we

consider:
How A interacts with P, what are the computation
capabilities of A

Examples of attackers classes

I The “Dolev-Yao” model (for protocols), with many variations

I The interactive polynomial time Turing machines (with many
variations)

I A quantum attacker

I Possible side channel information leaks

A security property may be satisfied for some attakers and not for
others: this is a problem for the promotion of formal methods

6/22



Which model should we choose ?

I The Dolev Yao model is well suited for automation, but it is
less precise (we may miss attacks)

I The computational model is more realistic, but it is difficult to
complete formal proofs

I In even more realistic models, it is even more difficult to
formalize proofs.

Is it irreconcilable ?
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Our basic idea

Instead of specifying what are the attacker’s capabilities, classes of
attackers are defined by axioms stating what they cannot do.

Examples

I S 6` n if n is a random number not appearing in S

I n ∼ n′ if n, n′ are two random numbers

I n ⊕m ∼ n′ if m is an arbitrary message, not containing n,
whose length is the same as the length of n.

Prove
∀A. (A |= Ax ⇒ A‖P |= φ)
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Why does it reconcile the various approaches ?

I We do not commit to a specific attacker model

I We stay within a classical framework of first-order logic
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This is just a first-order unsatisfiability issue

The language of the logic

I function symbols for basic constructions: pairing, encryption,
decryption, hash, database query, .... (it is an arbitrary choice)
EQ, EQL,... : Boolean valued function symbols

I built-in: conditionals (if then else), true, false

I Attacker’s symbols (in red)

I One predicate symbol: ∼.
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A typical template

A→ B : m(s)
B → A : compB(m(s))

B receives g1(m(s))

B sends compB(g1(m(s)))
A computes g2(m(s), compB(g1(m(s))))

Attacker’s computations are represented by free function symbols,
that may be interpreted in any way, as long as the axioms are
satisfied.

Strong secrecy of s:

g2(m(s), compB(g1(m(s)))) ∼ g2(m(s ′), compB(g1(m(s ′))))
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A simple example
A→ B : s ⊕ k1
B → A : s ⊕ k2

(both k1, k2 are shared secret keys)

does s remain confidential ?

s ⊕ k1, (g(s ⊕ k1)⊕ k1)⊕ k2 ∼ n′⊕ k1, (g(n′⊕ k1)⊕ k1)⊕ k2

Axiom 1: v , u ⊕ n1 ∼ v , n2
if n1, n2 are random numbers, u does not contain n1, v does not
contain n1, n2
Axiom 2: transitivity of ∼
Assume k1, k2 do not occur in s:

A1
s ⊕ k1, n1 ∼ n2, n1

A1
s ⊕ k1, (g(s ⊕ k1)⊕ k1)⊕ k2 ∼ s ⊕ k1, n1

A2
s ⊕ k1, (g(s ⊕ k1)⊕ k1)⊕ k2 ∼ n2, n1
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What if the proof fails ?

If we use a complete first-order deduction system, then failure of
the proof means that Ax ∧ ¬φ is satisfiable: there is a model.
The model includes attacker’s computations.

k2 ⊕ k1, g(k2 ⊕ k1)⊕ k1 ⊕ k2 ∼ n′ ⊕ k1, g(n′ ⊕ k1)⊕ k1 ⊕ k2

is not provable.

Counter-model: choose g(x) = 0 (and ⊕ is commutative, with
neutral lement 0). Many possible attacker models.

Exercises:
g(n ⊕ k1)⊕ k1 ∼ n is not provable. Any counter-model ?
Does n, g(n ⊕ k1)⊕ n ∼ k1, g(n ⊕ k1)⊕ n hold under Ax ?
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Folding

The last ingredient to reduce the security question to a first-order
entailment.

Given two protocols P1,P2, we can compute sequences of terms
tP1 , tP2 such that P1 and P2 are indistinguishable (w.r.t. a class of
attackers defined by Ax) iff Ax |= tP1 ∼ tP2

Example:

A→ B : νn, νr . aenc(〈n, pkA〉 , pkB , r)
B → A : νr ′. aenc(n, pkA, r

′)

tP = m1,m2 with:
m1 = aenc(〈n, pkA〉 , pkB , r),
m2 = aenc(π1(dec(g(m1))), pkA, r

′)

Warning: bounded behavior of P1,P2. Interleavings use attacker’s
symbols: the attacker schedules the messages.

14/22



Folding

The last ingredient to reduce the security question to a first-order
entailment.

Given two protocols P1,P2, we can compute sequences of terms
tP1 , tP2 such that P1 and P2 are indistinguishable (w.r.t. a class of
attackers defined by Ax) iff Ax |= tP1 ∼ tP2

Example:

A→ B : νn, νr . aenc(〈n, pkA〉 , pkB , r)
B → A : νr ′. aenc(n, pkA, r

′)

tP = m1,m2 with:
m1 = aenc(〈n, pkA〉 , pkB , r),
m2 = aenc(π1(dec(g(m1))), pkA, r

′)

Warning: bounded behavior of P1,P2. Interleavings use attacker’s
symbols: the attacker schedules the messages.

14/22



Folding

The last ingredient to reduce the security question to a first-order
entailment.

Given two protocols P1,P2, we can compute sequences of terms
tP1 , tP2 such that P1 and P2 are indistinguishable (w.r.t. a class of
attackers defined by Ax) iff Ax |= tP1 ∼ tP2

Example:

A→ B : νn, νr . aenc(〈n, pkA〉 , pkB , r)
B → A : νr ′. aenc(n, pkA, r

′)

tP = m1,m2 with:
m1 = aenc(〈n, pkA〉 , pkB , r),
m2 = aenc(π1(dec(g(m1))), pkA, r

′)

Warning: bounded behavior of P1,P2. Interleavings use attacker’s
symbols: the attacker schedules the messages.

14/22



Folding

The last ingredient to reduce the security question to a first-order
entailment.

Given two protocols P1,P2, we can compute sequences of terms
tP1 , tP2 such that P1 and P2 are indistinguishable (w.r.t. a class of
attackers defined by Ax) iff Ax |= tP1 ∼ tP2

Example:

A→ B : νn, νr . aenc(〈n, pkA〉 , pkB , r)
B → A : νr ′. aenc(n, pkA, r

′)

tP = m1,m2 with:
m1 = aenc(〈n, pkA〉 , pkB , r),
m2 = aenc(π1(dec(g(m1))), pkA, r

′)

Warning: bounded behavior of P1,P2. Interleavings use attacker’s
symbols: the attacker schedules the messages.

14/22



Folding

The last ingredient to reduce the security question to a first-order
entailment.

Given two protocols P1,P2, we can compute sequences of terms
tP1 , tP2 such that P1 and P2 are indistinguishable (w.r.t. a class of
attackers defined by Ax) iff Ax |= tP1 ∼ tP2

Example:

A→ B : νn, νr . aenc(〈n, pkA〉 , pkB , r)
B → A : νr ′. aenc(n, pkA, r

′)

tP = m1,m2 with:
m1 = aenc(〈n, pkA〉 , pkB , r),
m2 = aenc(π1(dec(g(m1))), pkA, r

′)

Warning: bounded behavior of P1,P2. Interleavings use attacker’s
symbols: the attacker schedules the messages.

14/22



Computational proofs

Designing axioms for cryptographic libraries

IND-CCA1

w , if EQL(u, u′) then aenc(u, pka, r) else u′′

∼ w , if EQL(u, u′) then aenc(u′, pka, r
′) else u′′

If ska only occurs in decryption position

PRF

w , if c then 0 else H(t, k) ∼ w , if c then 0 else n

where c =
∨

H(ti ,k)vw ,t EQ(t, ti ) and n is fresh

Computational indistinguishability reduces to an entailment
between two first-order formulas (no probabilities, no computation
time).
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Other approaches to computer assisted computational
proofs

I CryptoVerif (game transformations),

I EasyCrypt (probabilistic relational Hoare logic),

I F? (proofs of programs).

Comparison

it is matter of

I taste

I applications

I time investment

I interactivity
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Roadmap in 2014

At this stage (2014), it remained to:

I show that it is useful in practice (case studies)

I design axioms for many security primitives

I implement the logic and automate the proofs (as much as
possible)

I drop the restriction(s)

I show the usefulness for other attacker models
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Examples of Case studies

I Needham Schroeder protocols (new attacks, fixes), G. Bana

I Other classical protocols (new attacks, fixes), G. Scerri

I Key wrapping APIs, G. Scerri & R. Stanley-Oakes (CSF 2016)

I RFID protocols, H. Comon, A. Koutsos (CSF 2017)

I 5G AKA protocol, A. Koutsos (Euro S& P 2019)

I SSH with forwarding agent, C. Jacomme (CCS 2020)

I Several examples using Squirrel, Baelde et al (S& P 2021)
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The prover Squirrel

Developed (under development) by D. Baelde, C. Jacomme, A.
Koutsos (maybe others?)

I a meta-logic, allowing to combine reachability proofs and
indistinguishability proofs

I The possibility to reason on unbounded traces

I An input as applied pi-calculus processes

I Avoids most of the time the expensive folding step

I Case studies include authentication and strong secrecy
properties for SSH with forwarding agent
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Decidability result

A result by A. Koutsos (2019)

For a given set of axioms, including the library independent
computationaly sound axioms and the IND-CCA2 axiom, the logic
is decidable.

Consequences

I If the proof fails, then there is an attack

I There is a finite index equivalence relation on Probabilistic
Polynomial Time Turing Machines: considering only one
representative in each class is sufficient when looking for an
attack.
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Dropping the restriction

The main restiction is (was) the fixed number of sessions.

Two main recent advances

I In A. Koutsos work and in the Meta-Logic of Squirrel this
restriction is (partly) droped: it is possible to construct proofs
for an arbitrary number of sessions, provided it does not
depend on the security parameter.

I As a sub-product of the composition result of Comon,
Jacomme, Scerri 2020:
Security of !P against A ⇐ Security of P against AO.

Designing sound axioms w.r.t. AO reduces the unbounded
sessions case to the bounded case.
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Ongoing works

Other attacker models

Quantitative instrumentation

More automated deduction...

Beyond protocols
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