SECURE COMPILATION:
SOFTWARE FAULT ISOLATION AND

INFORMATION FLOW PRESERVATION

F. BESSON, S. BLAZY, A. DANG, T. JENSEN, P. WILKE
CELTIQUE/INRIA/UNIV RENNES

GDR MFSEC, MARS 2021

ARE COMPILERS TRUSTWORTHY?

What is the expected guarantee?

Semantic preservation
If beh(S) # 0 Then beh(T) C beh(S).

1. If source is deterministic, target has same behaviour.
2. If source has undefined behaviour, all bets are off.
Beware: aggressive optimisations exploit undefined behaviours.

Formal verification: CompCert, Vellum, CakeML

"Undefined behavior: what happened to my code?, Wang et al. [2012]

FUNCTIONAL CORRECTNESS OF TARGET CODE

Hyp1: My compiler has no bug (e.g., LLVM)
Hyp2 : My program has no UB (e.g., Linux kernel)
Functional properties are preserved.

= | can reason at source level!

SECURITY PROPERTIES OF TARGET CODE?

Compilers may enhance security

m Shadow stack
m Canaries
m Security instrumentation

Compilers may also break security counter-measures’

m Introduction of jump breaks CT-programming

m Associativity of xor breaks masking

m CSE breaks Fault-Injection protection

m (Dead) code removal breaks CFl;breaks safe erasure
= Security people do not trust compilers.

"The Correctness-Security Gap in Compiler Optimization, D'Silva et al. [2015]

3/34

GOAL: A SECURITY ENHANCING COMPILER

A secure compiler inserts security counter-measures (in
the source) and preserves them (in the assembly).

Attackers get a disadvantage at attacking the target.

Research Agenda
m Define classes of properties/attackers.
m Revisit/patch existing compiler passes.

4/ 304

TODAY

Security Enhancement: Software Fault Isolation’
Property: Integrity of a host running untrusted code

Security Preservation: Information Flow Preservation?
Property: Preservation of lifetime of secrets (secure erasure)

"Compiling Sandboxes: Formally Verified Software Fault Isolation, ESOP 2019
’Information-Flow Preservation in Compiler Optimisations, CSF 2019

5/ 34

SOFTWARE FAULT ISOLATION

SOFTWARE FAULT ISOLATION (SFI)

A trusted host wishes to run untrusted guest plugins

Full speed & Full security
m Speed: native code, same address space
m Security: strong isolation
» Code: calls limited to host API
» Data: memory accesses limited to sandbox

SANDBOX

TRADITIONAL SFI [wange et AL, SOSP'93]

"Run safely binary code of untrusted origin"
A modified Compiler (¢ TCB) masks memory accesses.

Binary verifier (¢ TCB) checks masking is correct.

Ex: (P)NaCl (Google Chrome) [S&P'09, USENIX Sec’10, CACM'10]

A compiler:
c— — LLVM — [SFI| - binary

A verified verifier [RockSalt, PLDI'12]

verifier : binary — B

7134

PORTABLE SOFTWARE FAULT ISOLATION [KroLL ET AL., CSF14]

€ — [Frontend | - Cm —[SFI| — cm’ —[Backend | — Asm
Property (SFI Security)

A program P is SFI-secure if all its memory accesses are within
the sandbox memory region.

Property (Safety)

A program P is safe if all its behaviours are defined i.e. not stuck

Transfer of security from Cm’ down-to Asm.

Let P be a program that is both SFl-secure and safe.

Let B € behave(ccomp(P)).

By semantic preservation, B € behave(P) (P is safe)

B is a secure behaviour (P is SFI-secure). O

OUR WORK: FULLY VERIFIED SFI WITHIN COMPCERT

Machined-checked proof of SFI-security and Safety

m Security: see [Kroll et al.]
m Safety: Re-design of the SFI transformation

Reduced TCB (no axiom for)

m Sandboxing memory accesses
Low-level pointer arithmetic

m Control-flow integrity
Trampoline indirect function calls

Other features
m Support for multi-threading
m Trusted Runtime

9/34

SANDBOX RELOCATION

g = 5;

long foo(bar: int -> int -> unit){
stk[8];
*bar(g, &stk);
return(=(&stk));

}

sb[2”k]= {5;...};
heap
long foo(sp:int,

shadow stack bar:int -> int -> unit){

spi=sp + 8 ;
shadow stack sbar(sp1,«(8sb),sp):
global variables return(xsp);

)
)
)
}

MASKING OF MEMORY ACCESSES

sb [Tlalclofofo] ... [T[A[G]F[F[F]
A
msk(A) [T][als][T[u]v]

MASKING OF MEMORY ACCESSES

sb [T]la|c]ofo]o] ... [T[A[G]F[F]F]
A x| Y][z][T]u]v
A & OXFFF olofo]T]u]v]
msk(A) [T[AlG]T]u]v]

MASKING OF MEMORY ACCESSES

sb Tla[c]o]ofo] ... [TIA[G]FF]F]
A x| Y][z][T]u]v
A & OXFFF loJoJo]T]u]Vv
(A & OXFFF)|TAGOOO [T|A|G]T]uU]V]
msk(A) HREENE

MASKING OF MEMORY ACCESSES

sb Tla[c]o]ofo] ... [TIA[G]FF]F]
A x| Y][z][T]u]v
A & OXFFF loJoJo]T]u]Vv
(A & OXFFF)|TAGOOO [T|A|G]T]uU]V]
msk(A) HREENE

msRk(A) = (A&(2"—1))|&sb

MASKING OF MEMORY ACCESSES

sb Tla[c]o]ofo] ... [TIA[G]FF]F]
A x| Y][z][T]u]v
A & OXFFF loJoJo]T]u]Vv
(A & OXFFF)|TAGOOO [T|A|G]T]uU]V]
msk(A) HREENE

msR(A) = (A&(2"—1))|&sb
Masking pointer arithmetic has no C semantics

Security Vacuously true
Safety Vacuously false

OUR SOLUTION: POINTER-FREE TRANSFORMATION

Pointers are compiled into their numeric value

sfi(&sb) = tag x 2

sfi(+(e) = s(sfi(e)xmsk + &sb)
sb[2"k]= {5;...};

long foo(sp:int,bar:int -> int -> unit){
spi=sp + 8 ;
bar(sp1,(&sb),sp);
return(+(spsmsk + &sh));

}

EXPERIMENTS WITH COMPCERT BENCHMARKS

c
[Gee |
GCC
T

[ciranG |
CLANG

COMPARISON WITH (P)NACL

120+ [CompCertSfi
100 1 B clangSfi / gecSfi

-100
nomaLcuit-ncs NLSF VP ORCCHEHOG
3325 GR 0 PGE LY *,;,'S>9:*cu3jmg9§
oEC olN 2o Qcl 2050 cHc S5~
v g C5¥ 00 T ongdlgivey
+ o

> >.r§‘c oc g "e Y2

ey g% s £

¥ IS ©

B GCCSFI/CLANGSFI very competitive
m ComPCERTSFI average overhead 9% (removing outliers)
= Optimisations improve SFI

CONCLUSION 1

Our source SFI pass deviates existing binary instrumentations:
m Masking without bitwise pointer arithmetics
m Source level control-flow integrity

Compilers can be used for Security

Price Guarantee only holds for safe programs
Limitation Compilers only preserve observable behaviours
But, security is not always reducible to safety.

15/ 34

INFORMATION FLOW PRESERVATION

INFORMATION-FLOW PRESERVATION

Our Information-Flow Preservation property aims at protecting
against:

m Data remanence

m Lifetime extension

m Increased information leakage

m Duplication of information

16 / 34

SEC. REQ. 1.: ERASE SENSITIVE DATA

Dead Store Elimination (DSE) is not secure’

def crypt(key, t): DSE | def crypt(key, t):

c = key " t y <= key * t
key = 0 skip
return c return c

"Dead Store Elimination (Still) Considered Harmful, Yang et al. [2017]

17 [34

SEC. REQ. 2: REDUCE THE LIFETIME OF SENSITIVE DATA

Code motion is not secure.

def pa(x):

X = 0
eevil()
e return a

a =X * ...

def p2(x):

a = X * ...

oevil()
X =0
ereturn a

18 [34

SEC. REQ. 3: LIMIT LEAKAGE OF INFORMATION

Common Expression Elimination is not secure.

def p1(x,y): de{mg2£x),(yz.y
a=(x+y)+z M acotmp -z
8= es g oz b = tmp + 2
e return e return

19/ 34

SEC. REQ. 4: DO NOT DUPLICATE SENSITIVE DATA

Register Allocation is not secure.

def p2(ri1):
def p1(x): stacki = ra
e N ...
e return ri1 = stack1
e return

FORMAL DEFINITION OF IFP

EXECUTION MODEL

m Trace based execution model
m Memory states: data observable by attackers

Execution

o Program of p
Initial memory with mo Tracet

o el

ATTACKER MODEL

m Attackers know the code
m Attackers observe n bits in the trace

Trace't

EEEJE X

ATTACKER MODEL

m Attackers know the code
m Attackers observe n bits in the trace

Trace't

I

ATTACKER MODEL

m Attackers know the code
m Attackers observe n bits in the trace

Trace't

B

ATTACKER MODEL

m Attackers know the code
m Attackers observe n bits in the trace

Trace't

DL };::\""@“'b‘t
\@2-bit

ATTACKER MODEL

m Attackers know the code

m Attackers observe n bits in the trace

ATTACKER MODEL

m Attackers know the code

m Attackers observe n bits in the trace

RATIONALE FOR HIERARCHY OF ATTACKERS

def crypt(key, t): def crypt(key, t):
c = key " t) c = key " t
key = 0 skip
ereturn c e return c

Haha! I've learned
the value key = c''t

o o

oco-bit oco-bit

m equally insecure for a strong attacker

RATIONALE FOR HIERARCHY OF ATTACKERS

def crypt(key, t):
c = key " t
key = 0
ereturn c

o S

oco-bit 1-bit

Nothing on key

def crypt(key, t):

y €= key ™ t
skip
e return c
| can get a _@
bit of key!
1-bit oo-bit

m equally insecure for a strong attacker
m p1is secure for the 1-bit attacker

ATTACKER KNOWLEDGE

m Attackers try to guess the initial memory used
m Possible initial memories matching its observations

Attacker Knowledge

DR

'Gradual Release: Unifying Declassification, Encryption and Key Release
Policies, Askarov and Sabelfeld [2007]

ATTACKER KNOWLEDGE

m Attackers try to guess the initial memory used
m Possible initial memories matching its observations

Attacker Knowledge

Remark:

Big/coarse attacker
knowledge means that there
is few information on mg

DB -C0 &

"Gradual Release: Unifying Declassification, Encryption and Key Release
Policies, Askarov and Sabelfeld [2007]

IFP TRANSFORMATION (1/2)

Any information that can be learned with a trace observa-
tion of the transformed program can also be learned with
the source program

LU

source

Haha!
I've learned
value of x

transformed

(L Fr) &

IFP TRANSFORMATION (1/2)

Any information that can be learned with a trace observa-
tion of the transformed program can also be learned with
the source program

Sorry mate, you
could already
find it up here

source

I've learned
value of x

transformed

(L Fr) &

IFP TRANSFORMATION (2/2)

A transformation from p, to p, is IFP iff:
V(mo, ty, t,). Vn. Jw € Q(t;, t,). Vo,. Kh(pq,w(0,2)) € K2(p,, 0,)

26 / 34

IFP TRANSFORMATION (2/2)

A transformation from p, to p, is IFP iff:
V(mo, ty, t,). Vn. Jw € Q(t;, t,). Vo,. Kh(pq,w(0,2)) € K2(p,, 0,)

Source program p,
Transformed program p,

P

P2

26 / 34

IFP TRANSFORMATION (2/2)

A transformation from p, to p, is IFP iff:

V(mo, ty, t)| Vn. Jw € Q(t;, t,). Vo,. Kh(p,,w(0,)) € K2(p.,0,)

For any execution from
the same initial memory mq

+ 5 — (0
+E - (0
2

26 / 34

IFP TRANSFORMATION (2/2)

A transformation from p, to p, is IFP iff:
(Mo, t,, 1) [VN) 3w € Qt,,). VO, K§(pr, w(02)) € K& (P2, 0,)

observation capabilities

{For attackers with any J

|

|

P

|2

e

IFP TRANSFORMATION (2/2)

A transformation from p, to p, is IFP iff:

V(mo, ty, t,). Vn.[3w € Q(t;, t.).| Vo,. KL(p,,w(0,)) C K2(p,,0,)

[Exists lockstep pairings of observations from t, to t1]

|

|

P

|2

e Ef@
~CD @

IFP TRANSFORMATION (2/2)

A transformation from p, to p, is IFP iff:
¥(Mo, tr, ;). ¥n. Jw € Qts, t,) ¥0a] K5(pa,w(02)) C K (p2, 02)

[For any observation o, of size n on the trace tz]

|

|

P

|2

w(02)

e e

IFP TRANSFORMATION (2/2)

A transformation from p, to p, is IFP iff:
(Mo, th,12). V. 3w € Qt,,15). Y0, [Kh(p1,w(02)) € K& (P2, 02)

K, derived from w(0,)
is a subset of
KC, derived from o,

t |

tE—-E) 8- -

w(oz) ri1

M
- D 8- @

TRANSLATION VALIDATION FOR REGIS-
TER ALLOCATION

REGISTER ALLOCATION

m Introduce spilling of values in the stack
m Usually not IFP:

» Duplication on both stack and registers
» Erasure may not be applied to both locations

Example with a 2-register machine:

def p2(ri,r2,stack_salt):
stack_k = r1
ria = stack_salt
ri = r2 + ri

def pi(k,t,salt):

tmp = t + salt >
k = tmp + k

r2 = stack_k
return k

r2 = ri1 + r2

return r2

27 [34

REGISTER ALLOCATION

m Introduce spilling of values in the stack
m Usually not IFP:

» Duplication on both stack and registers
» Erasure may not be applied to both locations

Example with a 2-register machine:

def pi(k,t,salt):

tmp = t duia - - _
k E tmp[Secretvalue|sdupl|cated] ri
return ‘and not erased on the stack k_k

I r2 = ri + r2
return r2

27 [34

VALIDATION AND PATCHING TOOLCHAIN

m Validator verifies the sufficient condition

m Detected leakage are patched

9

Source

P2

Trans-
formed

1\

performs | validated
Analysis

rejected

Ps

rechecks

patches p,

COMPUTING PAIRINGS

m build pairings from address of p, to address/constant

def p2(ri1,r2,stack_salt):
e stack_k = ria

def pa(k,t,salt):

r1 = stack_salt
.tmp=t+Saltﬁ ris = r2 + ri
k = tmp + k r2 = stack_k

e return k

r2 = ri + r2
e return r2

R« r1
t — r2
salt <« stack_salt

29 [34

COMPUTING PAIRINGS

m build pairings from address of p, to address/constant

def pa(k,t,salt):

e tmp = t + salt
k = tmp + k

e return k

ria = stack_salt
—p 11 = r2 + r1
r2 = stack_k

def p2(ri1,r2,stack_salt):
e stack_k = r1

r2 = ri + r2
e return r2

~ =

salt

%
—
F
—

r1
r2
stack_salt
stack_R

29 [34

COMPUTING PAIRINGS

m build pairings from address of p, to address/constant

def p2(ri1,r2,stack_salt):
e stack_k = ria

def pa(k,t,salt):

ri1 = stack_salt
.tmp=t+Saltﬁ ris = r2 + ri
k = tmp + k r2 = stack_k

e return k

r2 = ri + r2
e return r2

salt <+ r1
t — r2
salt <+ stack_salt
kR« stack_R

29 [34

COMPUTING PAIRINGS

m build pairings from address of p, to address/constant

def p2(ri1,r2,stack_salt):
e stack_k = ria

def pa(k,t,salt):

ri1 = k
PY tmp = t + salt) ri = f‘;a(j ;ialt
k = tmp + k r2 = stack_k

e return k

r2 = ri + r2
e return r2

tmp <+ r
t — r2
salt « stack_salt
kR <« stack_R

29 [34

COMPUTING PAIRINGS

m build pairings from address of p, to address/constant

def p2(ri1,r2,stack_salt):
e stack_k = ria

def pa(k,t,salt):

ri1 = k
PY tmp = t + salt) ri = f‘;a(j ;ialt
k = tmp + k r2 = stack _k

e return k

r2 = ri + r2
e return r2

tmp <+ r
R« r2

salt « stack_salt
kR <« stack_R

29 [34

COMPUTING PAIRINGS

m build pairings from address of p, to address/constant

def p2(ri1,r2,stack_salt):
e stack_k = ria

def pa(k,t,salt):

r1 = stack_salt
.tmp=t+Saltﬁ ris = r2 + ri
kK = tmp + Kk r2 = stack_k

e return k

r2 = ri + r2
e return r2

tmp <+ r
R« r2

salt « stack_salt
?7 <« stack_R

29 [34

COMPUTING PAIRINGS

m build pairings from address of p, to address/constant

def p2(ri1,r2,stack_salt):
e stack_k = ria

def pa(k,t,salt):

r1 = stack_salt
.tmp=t+Saltﬁ ris = r2 + ri
k = tmp + k r2 = stack_k

e return k

r2 = ri + r2
e return r2

tmp <+ r1
R« r2
salt « stack_salt
Leakage| ? <« stack_k

PATCHING LEAKAGE

Leakage are patched with constant values

def p2(ri,r2,stack_salt):
e stack_k = ria

def pi(k,t,salt): ri1 = stack_salt
e tmp = t + salt) ri = r2 + ri

k = tmp + k r2 = stack_k
e return k r2 = ri + r2

| stack_k = o
e return r2

tmp <« r
R« r2

salt « stack_salt
0 <+ stack_R

30/ 34

EXPERIMENTS

m Observation points are placed at function calls and returns
m On the verified compiler CompCert’

m We measure the impact of patching on the programs

m Correctness is ensured by CompCert original validator

"Formal Certification of a Compiler Back-end, Leroy [2006]

31/ 34

O
=
I
=
&
L
o
|
<
2
=
O
=
o
>
2]
<
L
=

[Time overhead

- Uljaad

- UdUsgewe
- dsyy

- qy

EVCT]

3 QEocu

- 9PRo3dNUY
- S3Is1)

- €eys

- [eJ3dads

r 34

- vmcmmca._m

- S9d.nAueuiqg
- Teys

- Apoqu

- Sop

- Ydewa

- 13siq

- 04q1apuey
- SHQgaAs sy
- \Sut

- UdNjuuey

80

T
o
©

o

<
abejuadiad

T
o
o~

0 - DDD::________DDEIDEIDDD[I

J

- Ulluad

- Yusgewre
- dsyy

- al

- 9A3ISu

3 Qrcocu

- wb._uow_USCv_
sl

- €eys

- 18J412ads

- 34

F VNEMMCQG

- S9dnA1euq
- Teys

- Apoqu

L sae

- Ydewn
rPesiq
-104qj3puey
- SHgeAaIsy
M3y

o RL [VIVEY,

ErW,,_,L,_J_mclclulzl['

[Executed instructions overhead

[Time overhead

T T
o o o o
© ~N

<
abejuadiad

0

O
=
I
=
&
L
o
|
<
2
=
O
=
o
>
2]
<
L
=

RELATED WORK AND CONCLUSION

RELATED WORK

m Securing a compiler transformation

» preserve programs that do not leak
> does not differentiate between degrees of leakage

m Preservation of side-channel countermeasures3 #
> framework to preserve security properties
> different leakage model
> use a 2-simulation property

'Securing a Compiler Transformation, Deng and Namjoshi [2016]

2Securing the SSA Transform, Deng and Namjoshi [2017]

3Secure Compilation of Side-Channel Countermeasures, Barthe et al. [2018]
“Formal verification of a constant-time preserving C compiler, Barthe et al.

[2020]

33/ 34

CONCLUSION

General purpose compilers are not designed for security

They aim at preserving observable behaviours

m Software Fault Isolation v/
m Information Flow X

In theory, compiler may not preserve information flow

In practice, they do break security of the source code

The best compilers are the least secure!
= Optimisations need to be carefully reviewed

An opportunity for secure (and verified) compilation?

34 [34

	Software Fault Isolation
	Information Flow Preservation
	Formal Definition of IFP
	Translation Validation for Register Allocation
	Related work and Conclusion
	References

