
Secure Compilation:
Software Fault Isolation and
Information Flow Preservation

F. Besson, S. Blazy, A. Dang, T. Jensen, P. Wilke

Celtique/Inria/Univ Rennes

Gdr MfSec, Mars 2021



Are Compilers Trustworthy?

What is the expected guarantee?

Semantic preservation
If beh(S) 6= ∅ Then beh(T) ⊆ beh(S).

1. If source is deterministic, target has same behaviour.
2. If source has undefined behaviour, all bets are o�.

Beware: aggressive optimisations exploit undefined behaviours1.

Formal verification: CompCert, Vellum, CakeML

1Undefined behavior: what happened to my code?, Wang et al. [2012]
1 / 34



Functional Correctness of Target Code

Hyp1 : My compiler has no bug (e.g., LLVM)

Hyp2 : My program has no UB (e.g., Linux kernel)

Functional properties are preserved.

⇒ I can reason at source level!

2 / 34



Security Properties of Target Code?

Compilers may enhance security

Shadow stack
Canaries
Security instrumentation

Compilers may also break security counter-measures1

Introduction of jump breaks CT-programming
Associativity of xor breaks masking
CSE breaks Fault-Injection protection
(Dead) code removal breaks CFI;breaks safe erasure

⇒ Security people do not trust compilers.
1The Correctness-Security Gap in Compiler Optimization, D’Silva et al. [2015]

3 / 34



Goal: a Security Enhancing Compiler

A secure compiler inserts security counter-measures (in
the source) and preserves them (in the assembly).

Attackers get a disadvantage at attacking the target.

Research Agenda
Define classes of properties/attackers.
Revisit/patch existing compiler passes.

4 / 34



Today

Security Enhancement: Software Fault Isolation1

Property: Integrity of a host running untrusted code

Security Preservation: Information Flow Preservation2

Property: Preservation of lifetime of secrets (secure erasure)

1Compiling Sandboxes: Formally Verified Software Fault Isolation, ESOP 2019
2Information-Flow Preservation in Compiler Optimisations, CSF 2019

5 / 34



Software Fault Isolation



Software Fault Isolation (SFI)

A trusted host wishes to run untrusted guest plugins

Full speed & Full security
Speed: native code, same address space
Security: strong isolation
I Code: calls limited to host API
I Data: memory accesses limited to sandbox

GUEST

SANDBOX

6 / 34



Traditional SFI [Wahbe et al., SOSP’93]

"Run safely binary code of untrusted origin"

A modified Compiler (/∈ TCB) masks memory accesses.

Binary verifier (∈ TCB) checks masking is correct.

Ex: (P)NaCl (Google Chrome) [S&P’09, USENIX Sec’10, CACM’10]
A compiler:

C → clang → LLVM → SFI → binary
A verified verifier [RockSalt, PLDI’12]

verifier : binary → B

7 / 34



Portable Software Fault Isolation [Kroll et al., CSF’14]

C → Frontend → Cm→ SFI → Cm′ → Backend → Asm

Property (SFI Security)
A program P is SFI-secure if all its memory accesses are within
the sandbox memory region.

Property (Safety)
A program P is safe if all its behaviours are defined i.e. not stuck

Transfer of security from Cm′ down-to Asm.
Let P be a program that is both SFI-secure and safe.
Let B ∈ behave(ccomp(P)).
By semantic preservation, B ∈ behave(P) (P is safe)
B is a secure behaviour (P is SFI-secure).

8 / 34



Our work: Fully Verified SFI within CompCert

Machined-checked proof of SFI-security and Safety
Security: see [Kroll et al.]
Safety: Re-design of the SFI transformation

Reduced TCB (no axiom for)
Sandboxing memory accesses
Low-level pointer arithmetic
Control-flow integrity
Trampoline indirect function calls

Other features
Support for multi-threading
Trusted Runtime

9 / 34



Sandbox Relocation

g = 5;

long foo(bar: int -> int -> unit){
stk[8];
*bar(g, &stk);
return(*(&stk));

}

heap

shadow stack

shadow stack

global variables

sb[2^k]= {5;...};

long foo(sp:int,
bar:int -> int -> unit){

sp1=sp + 8 ;
*bar(sp1,*(&sb),sp);
return(*sp);

}

10 / 34



Masking of Memory Accesses

sb T A G O O O . . . T A G F F F

A X Y Z T U V

A & OxFFF O O O T U V
(A & OxFFF)|TAGOOO T A G T U V

msk(A) T A G T U V

msk(A) = (A&(2k−1))|&sb

Masking pointer arithmetic has no C semantics

Security Vacuously true
Safety Vacuously false

11 / 34



Masking of Memory Accesses

sb T A G O O O . . . T A G F F F

A X Y Z T U V
A & OxFFF O O O T U V

(A & OxFFF)|TAGOOO T A G T U V

msk(A) T A G T U V

msk(A) = (A&(2k−1))|&sb

Masking pointer arithmetic has no C semantics

Security Vacuously true
Safety Vacuously false

11 / 34



Masking of Memory Accesses

sb T A G O O O . . . T A G F F F

A X Y Z T U V
A & OxFFF O O O T U V
(A & OxFFF)|TAGOOO T A G T U V

msk(A) T A G T U V

msk(A) = (A&(2k−1))|&sb

Masking pointer arithmetic has no C semantics

Security Vacuously true
Safety Vacuously false

11 / 34



Masking of Memory Accesses

sb T A G O O O . . . T A G F F F

A X Y Z T U V
A & OxFFF O O O T U V
(A & OxFFF)|TAGOOO T A G T U V

msk(A) T A G T U V

msk(A) = (A&(2k−1))|&sb

Masking pointer arithmetic has no C semantics

Security Vacuously true
Safety Vacuously false

11 / 34



Masking of Memory Accesses

sb T A G O O O . . . T A G F F F

A X Y Z T U V
A & OxFFF O O O T U V
(A & OxFFF)|TAGOOO T A G T U V

msk(A) T A G T U V

msk(A) = (A&(2k−1))|&sb

Masking pointer arithmetic has no C semantics

Security Vacuously true
Safety Vacuously false

11 / 34



Our solution: Pointer-free Transformation

Pointers are compiled into their numeric value

sfi(&sb) = tag× 2k

. . .
sfi(∗(e)) = ∗(sfi(e)&msk +&sb)

sb[2^k]= {5;...};

long foo(sp:int,bar:int -> int -> unit){
sp1=sp + 8 ;
*bar(sp1,*(&sb),sp);
return(*(sp&msk + &sb));

}

12 / 34



Experiments with CompCert Benchmarks

C CompCertSfi cmX CompCert xxxxx

gcc

clang
xxxxx

nacl

pnacl
———–

13 / 34



Comparison with (P)NaCl

ae
s

fft
sp

sh
a3 fib ar

vm
ac

h
lzs

s
ra

yt
ra

ce
r

bi
na

ry
tre

es
fa

nn
ku

ch fft
w

ns
ie

ve
bi

ts
sip

ha
sh

24
in

te
gr fft

lis
ts

qs
or

t
ns

ie
ve

m
an

de
lb

ro
t

pe
rli

n
nb

od
y

al
m

ab
en

ch
bi

se
ct

sh
a1

ch
om

p
sp

ec
tra

l
lzw

-100
-80
-60
-40
-20

0
20
40
60
80

100
120 CompCertSfi

clangSfi / gccSfi

gccSfi/clangSfi very competitive
CompCertSfi average overhead 9% (removing outliers)

⇒ Optimisations improve SFI
14 / 34



Conclusion 1

Our source SFI pass deviates existing binary instrumentations:
Masking without bitwise pointer arithmetics
Source level control-flow integrity

Compilers can be used for Security
Price Guarantee only holds for safe programs
Limitation Compilers only preserve observable behaviours
But, security is not always reducible to safety.

15 / 34



Information Flow Preservation



Information-Flow Preservation

Our Information-Flow Preservation property aims at protecting
against:

Data remanence
Lifetime extension
Increased information leakage
Duplication of information

16 / 34



Sec. Req. 1.: Erase Sensitive Data

Dead Store Elimination (DSE) is not secure1

def crypt(key, t):
c = key ^ t
key = 0
return c

def crypt(key, t):
c = key ^ t
skip
return c

DSE

1Dead Store Elimination (Still) Considered Harmful, Yang et al. [2017]
17 / 34



Sec. Req. 2: Reduce the Lifetime of Sensitive Data

Code motion is not secure.

def p1(x):
a = x * ...
x = 0
evil()
return a

def p2(x):
a = x * ...
evil()
x = 0
return a

•
•

• •

18 / 34



Sec. Req. 3: Limit Leakage of Information

Common Expression Elimination is not secure.

def p1(x,y):
a = (x + y) + z
b = (x + y) + z
return

def p2(x,y):
tmp = x + y
a = tmp + z
b = tmp + z
return• •

19 / 34



Sec. Req. 4: Do not Duplicate Sensitive Data

Register Allocation is not secure.

def p1(x):
...
return

def p2(r1):
stack1 = r1
...
r1 = stack1
return

•
•

20 / 34



Formal Definition of IFP



Execution model

Trace based execution model
Memory states: data observable by attackers

m0

Initial memory

+ p

Program
Execution

of p
with m0

m1 m2 m3 . . .

Trace t

21 / 34



Attacker model

Attackers know the code
Attackers observe n bits in the trace

Trace t

1-bit

2-bit

3-bit

. . .

22 / 34



Attacker model

Attackers know the code
Attackers observe n bits in the trace

Trace t

1-bit

2-bit

3-bit

. . .

22 / 34



Attacker model

Attackers know the code
Attackers observe n bits in the trace

Trace t

1-bit

2-bit

3-bit

. . .

22 / 34



Attacker model

Attackers know the code
Attackers observe n bits in the trace

Trace t

1-bit

2-bit

3-bit

. . .

22 / 34



Attacker model

Attackers know the code
Attackers observe n bits in the trace

Trace t

1-bit

2-bit

3-bit

. . .

22 / 34



Attacker model

Attackers know the code
Attackers observe n bits in the trace

Trace t

1-bit

2-bit

3-bit

. . .

22 / 34



Rationale for hierarchy of attackers

def crypt(key, t):
c = key ^ t
key = 0
return c

def crypt(key, t):
c = key ^ t
skip
return c• •

∞-bit ∞-bit

Haha! I’ve learned
the value key = c∧t

1-bit 1-bit

Nothing on key

I can get a
bit of key!

equally insecure for a strong attacker

p1 is secure for the 1-bit attacker

23 / 34



Rationale for hierarchy of attackers

def crypt(key, t):
c = key ^ t
key = 0
return c

def crypt(key, t):
c = key ^ t
skip
return c• •

∞-bit ∞-bit

Haha! I’ve learned
the value key = c∧t

1-bit 1-bit

Nothing on key

I can get a
bit of key!

equally insecure for a strong attacker
p1 is secure for the 1-bit attacker

23 / 34



Attacker Knowledge 1

Attackers try to guess the initial memory used
Possible initial memories matching its observations

m0 + p

Attacker Knowledge

m0

m0

m0

Remark:
Big/coarse attacker
knowledge means that there
is few information on m0

1Gradual Release: Unifying Declassification, Encryption and Key Release
Policies, Askarov and Sabelfeld [2007]

24 / 34



Attacker Knowledge 1

Attackers try to guess the initial memory used
Possible initial memories matching its observations

m0 + p

Attacker Knowledge

m0

m0

m0

Remark:
Big/coarse attacker
knowledge means that there
is few information on m0

1Gradual Release: Unifying Declassification, Encryption and Key Release
Policies, Askarov and Sabelfeld [2007]

24 / 34



IFP transformation (1/2)

Intuition

Any information that can be learned with a trace observa-
tion of the transformed program can also be learned with
the source program

transformed

source
Haha!
I’ve learned
value of x

Sorry mate, you
could already
find it up here

25 / 34



IFP transformation (1/2)

Intuition

Any information that can be learned with a trace observa-
tion of the transformed program can also be learned with
the source program

transformed

source
Haha!
I’ve learned
value of x

Sorry mate, you
could already
find it up here

25 / 34



IFP transformation (2/2)

A transformation from p1 to p2 is IFP i�:
∀(m0, t1, t2). ∀n. ∃ω ∈ Ω(t1, t2). ∀o2. Kt1

n (p1, ω(o2)) ⊆ Kt2
n (p2,o2)

m0

+

+

p1

p2

t1

t2

K1

K2

⊆

Source program p1
Transformed program p2

For any execution from
the same initial memory m0

For attackers with any
observation capabilitiesExists lockstep pairings of observations from t2 to t1

ω
ω

o2

ω(o2)

For any observation o2 of size n on the trace t2
K1 derived from ω(o2)
is a subset of
K2 derived from o2

26 / 34



IFP transformation (2/2)

A transformation from p1 to p2 is IFP i�:
∀(m0, t1, t2). ∀n. ∃ω ∈ Ω(t1, t2). ∀o2. Kt1

n (p1, ω(o2)) ⊆ Kt2
n (p2,o2)

m0

+

+

p1

p2

t1

t2

K1

K2

⊆

Source program p1
Transformed program p2

For any execution from
the same initial memory m0

For attackers with any
observation capabilitiesExists lockstep pairings of observations from t2 to t1

ω
ω

o2

ω(o2)

For any observation o2 of size n on the trace t2
K1 derived from ω(o2)
is a subset of
K2 derived from o2

26 / 34



IFP transformation (2/2)

A transformation from p1 to p2 is IFP i�:
∀(m0, t1, t2). ∀n. ∃ω ∈ Ω(t1, t2). ∀o2. Kt1

n (p1, ω(o2)) ⊆ Kt2
n (p2,o2)

m0

+

+

p1

p2

t1

t2

K1

K2

⊆

Source program p1
Transformed program p2

For any execution from
the same initial memory m0

For attackers with any
observation capabilitiesExists lockstep pairings of observations from t2 to t1

ω
ω

o2

ω(o2)

For any observation o2 of size n on the trace t2
K1 derived from ω(o2)
is a subset of
K2 derived from o2

26 / 34



IFP transformation (2/2)

A transformation from p1 to p2 is IFP i�:
∀(m0, t1, t2). ∀n. ∃ω ∈ Ω(t1, t2). ∀o2. Kt1

n (p1, ω(o2)) ⊆ Kt2
n (p2,o2)

m0

+

+

p1

p2

t1

t2

K1

K2

⊆

Source program p1
Transformed program p2

For any execution from
the same initial memory m0

For attackers with any
observation capabilitiesExists lockstep pairings of observations from t2 to t1

ω
ω

o2

ω(o2)

For any observation o2 of size n on the trace t2
K1 derived from ω(o2)
is a subset of
K2 derived from o2

26 / 34



IFP transformation (2/2)

A transformation from p1 to p2 is IFP i�:
∀(m0, t1, t2). ∀n. ∃ω ∈ Ω(t1, t2). ∀o2. Kt1

n (p1, ω(o2)) ⊆ Kt2
n (p2,o2)

m0

+

+

p1

p2

t1

t2

K1

K2

⊆

Source program p1
Transformed program p2

For any execution from
the same initial memory m0

For attackers with any
observation capabilitiesExists lockstep pairings of observations from t2 to t1

ω
ω

o2

ω(o2)

For any observation o2 of size n on the trace t2
K1 derived from ω(o2)
is a subset of
K2 derived from o2

26 / 34



IFP transformation (2/2)

A transformation from p1 to p2 is IFP i�:
∀(m0, t1, t2). ∀n. ∃ω ∈ Ω(t1, t2). ∀o2. Kt1

n (p1, ω(o2)) ⊆ Kt2
n (p2,o2)

m0

+

+

p1

p2

t1

t2

K1

K2

⊆

Source program p1
Transformed program p2

For any execution from
the same initial memory m0

For attackers with any
observation capabilitiesExists lockstep pairings of observations from t2 to t1

ω
ω

o2

ω(o2)

For any observation o2 of size n on the trace t2
K1 derived from ω(o2)
is a subset of
K2 derived from o2

26 / 34



IFP transformation (2/2)

A transformation from p1 to p2 is IFP i�:
∀(m0, t1, t2). ∀n. ∃ω ∈ Ω(t1, t2). ∀o2. Kt1

n (p1, ω(o2)) ⊆ Kt2
n (p2,o2)

m0

+

+

p1

p2

t1

t2

K1

K2

⊆

Source program p1
Transformed program p2

For any execution from
the same initial memory m0

For attackers with any
observation capabilitiesExists lockstep pairings of observations from t2 to t1

ω
ω

o2

ω(o2)

For any observation o2 of size n on the trace t2
K1 derived from ω(o2)
is a subset of
K2 derived from o2

26 / 34



Translation Validation for Regis-
ter Allocation



Register Allocation

Introduce spilling of values in the stack
Usually not IFP:
I Duplication on both stack and registers
I Erasure may not be applied to both locations

Example with a 2-register machine:

def p1(k,t,salt):
tmp = t + salt
k = tmp + k
return k

def p2(r1,r2,stack_salt):
stack_k = r1
r1 = stack_salt
r1 = r2 + r1
r2 = stack_k
r2 = r1 + r2
return r2

Secret value is duplicated
and not erased on the stack

27 / 34



Register Allocation

Introduce spilling of values in the stack
Usually not IFP:
I Duplication on both stack and registers
I Erasure may not be applied to both locations

Example with a 2-register machine:

def p1(k,t,salt):
tmp = t + salt
k = tmp + k
return k

def p2(r1,r2,stack_salt):
stack_k = r1
r1 = stack_salt
r1 = r2 + r1
r2 = stack_k
r2 = r1 + r2
return r2

Secret value is duplicated
and not erased on the stack

27 / 34



Validation and patching toolchain

Validator verifies the su�cient condition
Detected leakage are patched

p1

p2

p3

Source

Trans-
formed

Validator Analysis IFP
performs validated

rejected

patches p2rechecks

28 / 34



Computing pairings

build pairings from address of p2 to address/constant

def p1(k,t,salt):
tmp = t + salt
k = tmp + k
return k

def p2(r1,r2,stack_salt):
stack_k = r1
r1 = stack_salt
r1 = r2 + r1
r2 = stack_k
r2 = r1 + r2
return r2

•

•
•

•

k ← r1
t ← r2

salt ← stack_salt

k ← r1
t ← r2

salt ← stack_salt
k ← stack_k

salt ← r1
t ← r2

salt ← stack_salt
k ← stack_k

tmp ← r1
t ← r2

salt ← stack_salt
k ← stack_k

tmp ← r1
k ← r2

salt ← stack_salt
k ← stack_k

tmp ← r1
k ← r2

salt ← stack_salt
? ← stack_kLeakage

29 / 34



Computing pairings

build pairings from address of p2 to address/constant

def p1(k,t,salt):
tmp = t + salt
k = tmp + k
return k

def p2(r1,r2,stack_salt):
stack_k = r1
r1 = stack_salt
r1 = r2 + r1
r2 = stack_k
r2 = r1 + r2
return r2

•

•
•

•

k ← r1
t ← r2

salt ← stack_salt

k ← r1
t ← r2

salt ← stack_salt
k ← stack_k

salt ← r1
t ← r2

salt ← stack_salt
k ← stack_k

tmp ← r1
t ← r2

salt ← stack_salt
k ← stack_k

tmp ← r1
k ← r2

salt ← stack_salt
k ← stack_k

tmp ← r1
k ← r2

salt ← stack_salt
? ← stack_kLeakage

29 / 34



Computing pairings

build pairings from address of p2 to address/constant

def p1(k,t,salt):
tmp = t + salt
k = tmp + k
return k

def p2(r1,r2,stack_salt):
stack_k = r1
r1 = stack_salt
r1 = r2 + r1
r2 = stack_k
r2 = r1 + r2
return r2

•

•
•

•

k ← r1
t ← r2

salt ← stack_salt

k ← r1
t ← r2

salt ← stack_salt
k ← stack_k

salt ← r1
t ← r2

salt ← stack_salt
k ← stack_k

tmp ← r1
t ← r2

salt ← stack_salt
k ← stack_k

tmp ← r1
k ← r2

salt ← stack_salt
k ← stack_k

tmp ← r1
k ← r2

salt ← stack_salt
? ← stack_kLeakage

29 / 34



Computing pairings

build pairings from address of p2 to address/constant

def p1(k,t,salt):
tmp = t + salt
k = tmp + k
return k

def p2(r1,r2,stack_salt):
stack_k = r1
r1 = stack_salt
r1 = r2 + r1
r2 = stack_k
r2 = r1 + r2
return r2

•

•
•

•

k ← r1
t ← r2

salt ← stack_salt

k ← r1
t ← r2

salt ← stack_salt
k ← stack_k

salt ← r1
t ← r2

salt ← stack_salt
k ← stack_k

tmp ← r1
t ← r2

salt ← stack_salt
k ← stack_k

tmp ← r1
k ← r2

salt ← stack_salt
k ← stack_k

tmp ← r1
k ← r2

salt ← stack_salt
? ← stack_kLeakage

29 / 34



Computing pairings

build pairings from address of p2 to address/constant

def p1(k,t,salt):
tmp = t + salt
k = tmp + k
return k

def p2(r1,r2,stack_salt):
stack_k = r1
r1 = stack_salt
r1 = r2 + r1
r2 = stack_k
r2 = r1 + r2
return r2

•

•
•

•

k ← r1
t ← r2

salt ← stack_salt

k ← r1
t ← r2

salt ← stack_salt
k ← stack_k

salt ← r1
t ← r2

salt ← stack_salt
k ← stack_k

tmp ← r1
t ← r2

salt ← stack_salt
k ← stack_k

tmp ← r1
k ← r2

salt ← stack_salt
k ← stack_k

tmp ← r1
k ← r2

salt ← stack_salt
? ← stack_kLeakage

29 / 34



Computing pairings

build pairings from address of p2 to address/constant

def p1(k,t,salt):
tmp = t + salt
k = tmp + k
return k

def p2(r1,r2,stack_salt):
stack_k = r1
r1 = stack_salt
r1 = r2 + r1
r2 = stack_k
r2 = r1 + r2
return r2

•

•
•

•

k ← r1
t ← r2

salt ← stack_salt

k ← r1
t ← r2

salt ← stack_salt
k ← stack_k

salt ← r1
t ← r2

salt ← stack_salt
k ← stack_k

tmp ← r1
t ← r2

salt ← stack_salt
k ← stack_k

tmp ← r1
k ← r2

salt ← stack_salt
k ← stack_k

tmp ← r1
k ← r2

salt ← stack_salt
? ← stack_kLeakage

29 / 34



Computing pairings

build pairings from address of p2 to address/constant

def p1(k,t,salt):
tmp = t + salt
k = tmp + k
return k

def p2(r1,r2,stack_salt):
stack_k = r1
r1 = stack_salt
r1 = r2 + r1
r2 = stack_k
r2 = r1 + r2
return r2

•

•
•

•

k ← r1
t ← r2

salt ← stack_salt

k ← r1
t ← r2

salt ← stack_salt
k ← stack_k

salt ← r1
t ← r2

salt ← stack_salt
k ← stack_k

tmp ← r1
t ← r2

salt ← stack_salt
k ← stack_k

tmp ← r1
k ← r2

salt ← stack_salt
k ← stack_k

tmp ← r1
k ← r2

salt ← stack_salt
? ← stack_kLeakage

29 / 34



Patching leakage

Leakage are patched with constant values

def p1(k,t,salt):
tmp = t + salt
k = tmp + k
return k

def p2(r1,r2,stack_salt):
stack_k = r1
r1 = stack_salt
r1 = r2 + r1
r2 = stack_k
r2 = r1 + r2
stack_k = 0
return r2

•

•

•

•

tmp ← r1
k ← r2

salt ← stack_salt
0 ← stack_k

30 / 34



Experiments

Observation points are placed at function calls and returns
On the verified compiler CompCert1

We measure the impact of patching on the programs
Correctness is ensured by CompCert original validator

1Formal Certification of a Compiler Back-end, Leroy [2006]
31 / 34



Measuring impact of patching

fa
nn

ku
ch fft
w

ns
ie

ve
bi

ts
m

an
de

lb
ro

t
bi

se
ct

vm
ac

h
ae

s
nb

od
y

sh
a1

bi
na

ry
tre

es
sip

ha
sh

24 fft
sp

ec
tra

l
sh

a3 lis
ts

kn
uc

le
ot

id
e

ch
om

p
ns

ie
ve fib

fft
sp

al
m

ab
en

ch
pe

rli
n

0

20

40

60

80

Pe
rc

en
ta

ge
Time overhead

32 / 34



Measuring impact of patching

fa
nn

ku
ch fft
w

ns
ie

ve
bi

ts
m

an
de

lb
ro

t
bi

se
ct

vm
ac

h
ae

s
nb

od
y

sh
a1

bi
na

ry
tre

es
sip

ha
sh

24 fft
sp

ec
tra

l
sh

a3 lis
ts

kn
uc

le
ot

id
e

ch
om

p
ns

ie
ve fib

fft
sp

al
m

ab
en

ch
pe

rli
n

0

20

40

60

80

Pe
rc

en
ta

ge
Time overhead
Executed instructions overhead

32 / 34



Related work and Conclusion



Related work

Securing a compiler transformation12

I preserve programs that do not leak
I does not di�erentiate between degrees of leakage

Preservation of side-channel countermeasures3 4

I framework to preserve security properties
I di�erent leakage model
I use a 2-simulation property

1Securing a Compiler Transformation, Deng and Namjoshi [2016]
2Securing the SSA Transform, Deng and Namjoshi [2017]
3Secure Compilation of Side-Channel Countermeasures, Barthe et al. [2018]
4Formal verification of a constant-time preserving C compiler, Barthe et al.

[2020]
33 / 34



Conclusion

General purpose compilers are not designed for security

They aim at preserving observable behaviours

Software Fault Isolation X

Information Flow 7

In theory, compiler may not preserve information flow
In practice, they do break security of the source code

The best compilers are the least secure!
⇒ Optimisations need to be carefully reviewed

An opportunity for secure (and verified) compilation?
34 / 34


	Software Fault Isolation
	Information Flow Preservation
	Formal Definition of IFP
	Translation Validation for Register Allocation
	Related work and Conclusion
	References

